518 research outputs found

    The need for dark matter in galaxies

    Full text link
    Cooperstock and Tieu have proposed a model to account for galactic rotation curves without invoking dark matter. I argue that no model of this type can work

    Local anesthetics induce autophagy in young permanent tooth pulp cells

    Get PDF
    Pulp cells are essential for tooth development, and dentin repair and regeneration. In addition these cells have been identified as an important stem cell source. Local anesthetics are widely used in dental clinics, as well as the other clinical disciplines and have been suggested to interfere with human permanent tooth development and induce tooth agenesis through unknown mechanisms. Using pig model and human young permanent tooth pulp cells, our research has identified that the local anesthetics commonly used in clinics can affect cell proliferation. Molecular pathway profiling suggested that LC3II is one of the earliest molecules induced by the agents and p62 is the only common downstream target identified for all the drugs tested. The effect of the drugs could be partially recovered by V-ATPase inhibitor only if early intervention is performed. Our results provide novel evidence that local anesthetics could affect tooth cell growth that potentially can have impacts on tooth development

    Case Report: Ocular Toxocariasis: A Report of Three Cases from the Mississippi Delta

    Get PDF
    Ocular toxocariasis can be vision threatening, and is commonly reported from tropical or subtropical regions. Knowledge of clinical manifestations from the United States, particularly in underserved areas such as the American South, is lacking. We report three cases of ocular toxocariasis in individuals from the Mississippi Delta, a rural community with prevalent poverty. Visual acuity was severely affected in two of the three cases. Increased awareness of ocular toxocariasis, which may have under-recognized frequency, will contribute to prompt diagnosis and treatment, which will ultimately improve patient health in the region

    Galactic Dynamics via General Relativity: A Compilation and New Developments

    Full text link
    We consider the consequences of applying general relativity to the description of the dynamics of a galaxy, given the observed flattened rotation curves. The galaxy is modeled as a stationary axially symmetric pressure-free fluid. In spite of the weak gravitational field and the non-relativistic source velocities, the mathematical system is still seen to be non-linear. It is shown that the rotation curves for various galaxies as examples are consistent with the mass density distributions of the visible matter within essentially flattened disks. This obviates the need for a massive halo of exotic dark matter. We determine that the mass density for the luminous threshold as tracked in the radial direction is 1021.7510^{-21.75} kg\cdotm3^{-3} for these galaxies and conjecture that this will be the case for other galaxies yet to be analyzed. We present a velocity dispersion test to determine the extent, if of any significance, of matter that may lie beyond the visible/HI region. Various comments and criticisms from colleagues are addressed.Comment: 35 pages, 13 figure

    Thermoresponsive Hybrid Colloidal Capsules as an Inorganic Additive for Fire-Resistant Silicone-Based Coatings

    Get PDF
    Improving the fire-resistant efficiency of silicone-based polymeric coatings is important in the building industry and electrical utilities. In this study, the water-containing hybrid calcium carbonate (CaCO3)–silica (SiO2) colloidal capsule has been developed and optimized as an inorganic flame-retardant additive. This capsule exhibits excellent thermal stability up to 1000 °C with a remaining intact hollow spherical structure. When used as an inorganic filler at 15 wt %, it not only reduces the potential fire hazards by over 44% (i.e., the sumHRC reduced from 112.00 J/g K to 62.00 J/g K) but also improves the heat-barrier efficiency by over 30% (i.e., the temperature at the steady state reduced from 350 to 360 °C to below 250 °C) of the silicone-based polymeric coatings. In addition, the capsule–polymer composite coating exhibits excellent ductility which can withstand heat-induced mechanical stresses and prevent crack propagation under radiative heating conditions. The fire-resistant mechanism of the colloidal capsule is related strongly to the encapsulated water core and the reactions between SiO2 and CaCO3 at elevated temperatures. They not only contribute to a cooling effect on the flammable pyrolysis gases but also induce the insulative effect to the resulted char during combustion. The significant advances in this study will have a high impact in customizing the functional inorganic additives for a better design of the flame-retardant composite coating

    Asymmetric Cold Rolling of Thin Strip with Roll Edge Kiss

    Get PDF
    Asymmetric rolling can reduce the thickness of rolled strip and rolling load significantly. In this paper, the asymmetric cold rolling of thin strip with roll edge kiss was analysed theoretically and the rolling pressure, intermediate force between the work roll and backup roll, the work roll edge kiss force, the strip profile after rolling are obtained for this special asymmetric rolling. The rolling pressure, intermediate force, roll edge kiss force and the strip profile are compared for various roll speed ratios, reduction and friction coefficients. Simulation result shows that the roll speed ratio and reduction have significant influence on the profile of rolled strip, and the calculated rolling forces are consistent with the measured values. The effect of friction in the roll bite on mechanics of the asymmetric cold rolling of thin strip with roll edge kiss is also discussed

    Computational design of custom therapeutic cells to correct failing human cardiomyocytes

    Get PDF
    Background: Myocardial delivery of non-excitable cells—namely human mesenchymal stem cells (hMSCs) and c-kit+ cardiac interstitial cells (hCICs)—remains a promising approach for treating the failing heart. Recent empirical studies attempt to improve such therapies by genetically engineering cells to express specific ion channels, or by creating hybrid cells with combined channel expression. This study uses a computational modeling approach to test the hypothesis that custom hypothetical cells can be rationally designed to restore a healthy phenotype when coupled to human heart failure (HF) cardiomyocytes.Methods: Candidate custom cells were simulated with a combination of ion channels from non-excitable cells and healthy human cardiomyocytes (hCMs). Using a genetic algorithm-based optimization approach, candidate cells were accepted if a root mean square error (RMSE) of less than 50% relative to healthy hCM was achieved for both action potential and calcium transient waveforms for the cell-treated HF cardiomyocyte, normalized to the untreated HF cardiomyocyte.Results: Custom cells expressing only non-excitable ion channels were inadequate to restore a healthy cardiac phenotype when coupled to either fibrotic or non-fibrotic HF cardiomyocytes. In contrast, custom cells also expressing cardiac ion channels led to acceptable restoration of a healthy cardiomyocyte phenotype when coupled to fibrotic, but not non-fibrotic, HF cardiomyocytes. Incorporating the cardiomyocyte inward rectifier K+ channel was critical to accomplishing this phenotypic rescue while also improving single-cell action potential metrics associated with arrhythmias, namely resting membrane potential and action potential duration. The computational approach also provided insight into the rescue mechanisms, whereby heterocellular coupling enhanced cardiomyocyte L-type calcium current and promoted calcium-induced calcium release. Finally, as a therapeutically translatable strategy, we simulated delivery of hMSCs and hCICs genetically engineered to express the cardiomyocyte inward rectifier K+ channel, which decreased action potential and calcium transient RMSEs by at least 24% relative to control hMSCs and hCICs, with more favorable single-cell arrhythmia metrics.Conclusion: Computational modeling facilitates exploration of customizable engineered cell therapies. Optimized cells expressing cardiac ion channels restored healthy action potential and calcium handling phenotypes in fibrotic HF cardiomyocytes and improved single-cell arrhythmia metrics, warranting further experimental validation studies of the proposed custom therapeutic cells
    corecore