269 research outputs found

    MECHANISM OF ROOT-CONTRACTION IN BRODIAEA LACTEA

    Full text link

    Phenetic distances in the Drosophila melanogaster-subgroup species and oviposition-site preference for food components

    Get PDF
    Oviposition-site preferences (O.S.P.) have been investigated in females of six sibling species of the Drosophila melanogaster subgroup. O.S.P. were determined for standard food components and yeast genotypes. Females of all species showed a strong preference for complete medium and avoidance of pure agar as an egg-deposition site.\ud \ud Ecological trees of the species on the basis of rank correlations were constructed. In ‘no-choice’ situations they agree with phylogenetic trees obtained by different means but in ‘choice’ situations they do not agree too well.\ud \ud All species showed a high egg production on live yeast compared with standard medium (with killed yeast) and D. erecta females demonstrated discrimination between yeast genotypes. Niche breadth calculated from survival on the sterol mutant yeasts correlated fairly well with phylogenetic trees

    Survivability Is More Fundamental Than Evolvability

    Get PDF
    For a lineage to survive over long time periods, it must sometimes change. This has given rise to the term evolvability, meaning the tendency to produce adaptive variation. One lineage may be superior to another in terms of its current standing variation, or it may tend to produce more adaptive variation. However, evolutionary outcomes depend on more than standing variation and produced adaptive variation: deleterious variation also matters. Evolvability, as most commonly interpreted, is not predictive of evolutionary outcomes. Here, we define a predictive measure of the evolutionary success of a lineage that we call the k-survivability, defined as the probability that the lineage avoids extinction for k generations. We estimate the k-survivability using multiple experimental replicates. Because we measure evolutionary outcomes, the initial standing variation, the full spectrum of generated variation, and the heritability of that variation are all incorporated. Survivability also accounts for the decreased joint likelihood of extinction of sub-lineages when they 1) disperse in space, or 2) diversify in lifestyle. We illustrate measurement of survivability with in silico models, and suggest that it may also be measured in vivo using multiple longitudinal replicates. The k-survivability is a metric that enables the quantitative study of, for example, the evolution of 1) mutation rates, 2) dispersal mechanisms, 3) the genotype-phenotype map, and 4) sexual reproduction, in temporally and spatially fluctuating environments. Although these disparate phenomena evolve by well-understood microevolutionary rules, they are also subject to the macroevolutionary constraint of long-term survivability

    Genetics of Microenvironmental Sensitivity of Body Weight in Rainbow Trout (Oncorhynchus mykiss) Selected for Improved Growth

    Get PDF
    Microenvironmental sensitivity of a genotype refers to the ability to buffer against non-specific environmental factors, and it can be quantified by the amount of residual variation in a trait expressed by the genotype’s offspring within a (macro)environment. Due to the high degree of polymorphism in behavioral, growth and life-history traits, both farmed and wild salmonids are highly susceptible to microenvironmental variation, yet the heritable basis of this characteristic remains unknown. We estimated the genetic (co)variance of body weight and its residual variation in 2-year-old rainbow trout (Oncorhynchus mykiss) using a multigenerational data of 45,900 individuals from the Finnish national breeding programme. We also tested whether or not microenvironmental sensitivity has been changed as a correlated genetic response when genetic improvement for growth has been practiced over five generations. The animal model analysis revealed the presence of genetic heterogeneity both in body weight and its residual variation. Heritability of residual variation was remarkably lower (0.02) than that for body weight (0.35). However, genetic coefficient of variation was notable in both body weight (14%) and its residual variation (37%), suggesting a substantial potential for selection responses in both traits. Furthermore, a significant negative genetic correlation (−0.16) was found between body weight and its residual variation, i.e., rapidly growing genotypes are also more tolerant to perturbations in microenvironment. The genetic trends showed that fish growth was successfully increased by selective breeding (an average of 6% per generation), whereas no genetic change occurred in residual variation during the same period. The results imply that genetic improvement for body weight does not cause a concomitant increase in microenvironmental sensitivity. For commercial production, however, there may be high potential to simultaneously improve weight gain and increase its uniformity if both criteria are included in a selection index

    From Mendel’s discovery on pea to today’s plant genetics and breeding

    Get PDF
    In 2015, we celebrated the 150th anniversary of the presentation of the seminal work of Gregor Johann Mendel. While Darwin’s theory of evolution was based on differential survival and differential reproductive success, Mendel’s theory of heredity relies on equality and stability throughout all stages of the life cycle. Darwin’s concepts were continuous variation and “soft” heredity; Mendel espoused discontinuous variation and “hard” heredity. Thus, the combination of Mendelian genetics with Darwin’s theory of natural selection was the process that resulted in the modern synthesis of evolutionary biology. Although biology, genetics, and genomics have been revolutionized in recent years, modern genetics will forever rely on simple principles founded on pea breeding using seven single gene characters. Purposeful use of mutants to study gene function is one of the essential tools of modern genetics. Today, over 100 plant species genomes have been sequenced. Mapping populations and their use in segregation of molecular markers and marker–trait association to map and isolate genes, were developed on the basis of Mendel's work. Genome-wide or genomic selection is a recent approach for the development of improved breeding lines. The analysis of complex traits has been enhanced by high-throughput phenotyping and developments in statistical and modeling methods for the analysis of phenotypic data. Introgression of novel alleles from landraces and wild relatives widens genetic diversity and improves traits; transgenic methodologies allow for the introduction of novel genes from diverse sources, and gene editing approaches offer possibilities to manipulate gene in a precise manner

    WHAT STUDENTS SPEND

    No full text
    corecore