7,886 research outputs found
Hearing the shape of a room
PMCID: PMC3725052The final published version of this article can be found here: www.pnas.org/cgi/doi/10.1073/pnas.130993211
Algebraic methods for dynamic systems
Algebraic methods for application to dynamic control system
Algebraic methods for control system analysis and design Final report, Apr. 1967 - Apr. 1969
Algebraic methods for analysis and design of control system
Supergravity Computations without Gravity Complications
The conformal compensator formalism is a convenient and versatile
representation of supergravity (SUGRA) obtained by gauge fixing conformal
SUGRA. Unfortunately, practical calculations often require cumbersome
manipulations of component field terms involving the full gravity multiplet. In
this paper, we derive an alternative gauge fixing for conformal SUGRA which
decouples these gravity complications from SUGRA computations. This yields a
simplified tree-level action for the matter fields in SUGRA which can be
expressed compactly in terms of superfields and a modified conformal
compensator. Phenomenologically relevant quantities such as the scalar
potential and fermion mass matrix are then straightforwardly obtained by
expanding the action in superspace.Comment: 10 pages; v2: references update
How realistic are solar model atmospheres?
Recently, new solar model atmospheres have been developed to replace
classical 1D LTE hydrostatic models and used to for example derive the solar
chemical composition. We aim to test various models against key observational
constraints. In particular, a 3D model used to derive the solar abundances, a
3D MHD model (with an imposed 10 mT vertical magnetic field), 1D models from
the PHOENIX project, the 1D MARCS model, and the 1D semi-empirical model of
Holweger & M\"uller. We confront the models with observational diagnostics of
the temperature profile: continuum centre-to-limb variations (CLV), absolute
continuum fluxes, and the wings of hydrogen lines. We also test the 3D models
for the intensity distribution of the granulation and spectral line shapes. The
predictions from the 3D model are in excellent agreement with the continuum CLV
observations, performing even better than the Holweger & M\"uller model
(constructed largely to fulfil such observations). The predictions of the 1D
theoretical models are worse, given their steeper temperature gradients. For
the continuum fluxes, predictions for most models agree well with the
observations. No model fits all hydrogen lines perfectly, but again the 3D
model comes ahead. The 3D model also reproduces the observed continuum
intensity fluctuations and spectral line shapes very well. The excellent
agreement of the 3D model with the observables reinforces the view that its
temperature structure is realistic. It outperforms the MHD simulation in all
diagnostics, implying that recent claims for revised abundances based on MHD
modelling are premature. Several weaknesses in the 1D models are exposed. The
differences between the PHOENIX LTE and NLTE models are small. We conclude that
the 3D hydrodynamical model is superior to any of the tested 1D models, which
gives further confidence in the solar abundance analyses based on it.Comment: 17 pages, 15 figures. Accepted for publication in A&
Reference Distorted Prices
I show that when consumers (mis)perceive prices relative to reference prices,
budgets turn out to be soft, prices tend to be lower and the average quality of
goods sold decreases. These observations provide explanations for decentralized
purchase decisions, for people being happy with a purchase even when they have
paid their evaluation, and for why trade might affect high quality local firms
'unfairly'
An effective thermodynamic potential from the instanton with Polyakov-loop contributions
We derive an effective thermodynamic potential (Omega_eff) at finite
temperature (T>0) and zero quark-chemical potential (mu_R=0), using the
singular-gauge instanton solution and Matsubara formula for N_c=3 and N_f=2 in
the chiral limit. The momentum-dependent constituent-quark mass is also
obtained as a function of T, employing the Harrington-Shepard caloron solution
in the large-N_c limit. In addition, we take into account the imaginary quark
chemical potential mu_I = A_4, translated as the traced Polayakov-loop (Phi) as
an order parameter for the Z(N_c) symmsetry, characterizing the confinement
(intact) and deconfinement (spontaneously broken) phases. As a result, we
observe the crossover of the chiral (chi) order parameter sigma^2 and Phi. It
also turns out that the critical temperature for the deconfinment phase
transition, T^Z_c is lowered by about (5-10)% in comparison to the case with a
constant constituent-quark mass. This behavior can be understood by
considerable effects from the partial chiral restoration and nontrivial QCD
vacuum on Phi. Numerical calculations show that the crossover transitions occur
at (T^chi_c,T^Z_c) ~ (216,227) MeV.Comment: 15 pages, 7 figure
Copyright Notice
IAB Thoughts on Encodings for Internationalized Domain Names This document explores issues with Internationalized Domain Names (IDNs) that result from the use of various encoding schemes such as UTF-8 and the ASCII-Compatible Encoding produced by the Punycode algorithm. It focuses on the importance of agreeing on a single encoding and how complicated the state of affairs ends up being as a result of using different encodings today. Status of This Memo This document is not an Internet Standards Track specification; it is published for informational purposes. This document is a product of the Internet Architecture Board (IAB) and represents information that the IAB has deemed valuable to provide for permanent record. Documents approved for publication by the IAB are not a candidate for any level of Internet Standard; see Section 2 of RFC 5741. Information about the current status of this document, any errata, and how to provide feedback on it may be obtained a
Commensurate antiferromagnetic ordering in Ba(Fe{1-x}Co{x})2As2 determined by x-ray resonant magnetic scattering at the Fe K-edge
We describe x-ray resonant magnetic diffraction measurements at the Fe K-edge
of both the parent BaFe2As2 and superconducting Ba(Fe0.953Co0.047)2As2
compounds. From these high-resolution measurements we conclude that the
magnetic structure is commensurate for both compositions. The energy spectrum
of the resonant scattering is in reasonable agreement with theoretical
calculations using the full-potential linear augmented plane wave method with a
local density functional.Comment: 5 pages, 3 figures; accepted for publication in Phys. Rev. B Rapid
Com
- …
