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1NTRODUC"ION 

The research on algebraic methods for analysis and design of 

control systems for the past two years, April, 1967 - April, 1969, can 
be conveniently divided into three major areas: 

1. Linear System Design 

2.  Absolute Stability Analysis of Nonlinear Systems 

3. Approximate Nonlinear Analysis 

In this final report, the obtained results will be outlined for each area 

separately. 

summary for each topic is given and the list of the references is included. 

For convenience, pertinent papers are added at the end of the report. 

The references that are not included in the report can be obtained on 

request from the investigators e 

Since most of the research was publishable, only a brief 

V 
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1. LINEAR SY!jTB4 DESIGN 

1.1. Multiparameter Analysis and Design. 

The Parameter Method was basically a two parameter method, with 

some possible extensions to three parameter cases. Many problems are 

multiparameter problems for which analysis and design techniques are 

lacking. Investigations leading to multiparameter techniques have 

been initiated, starting with three dimensional studies as a first 

step. Worthwhile results have been obtained (1). Further extensions 

are concerned with geometric approach to the multiparameter design. 

A paper on basic geometric relationships (2) has been accepted for 

presentation at the Eighth International Symposium on Space Technology 

and Science in Tokyo. The geometric approach led to some algebraic 

techniques which appear to be useful for three, four and five parameter 

problems. A paper (3) presenting these results is under preparation. 

1.2. Development of General Purpose Computer Programs. 

The well known relationships between the coefficients of a polynomial 

and its roots can be written down in matrix form, and the coefficients 

are functions of the system parameters. This matrix relationship defines 

an N-dimensional par&eter space, which appears to be worth studying in 

the future. Manipulation of the matrices permits reduction of the 

N-dimensional space to a two-parameter space. The resulting matrix 

equations are readily programmed using existing matrix subroutines which 

are normally available in any computation center." 

* A specific program has been developed for use with the NAYAX, POST(;RAWATE 
SCHOOL IBM/360 System. 
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The program computes the parameter plane curves for cases in which 

the parameters are related linearly in the coefficients, and also for 

cases in which the parameters appear as a product. 

program provides values of - all roots of the polynomial at preselected 

points. 

parameter variations whenever desired. 

In addition, the 

Further, it can compute the sensitivities of the roots to 

The theoretical results have been presented in a short paper at 

Princeton University (4) and a full length paper is to be presented at 

the Eighth International Symposium on Space Technology and Science (5) in 

Tokyo and will be published in the proceedings of that Symposium. i 

A second general program** has been developed for the computation of 

Frequency Response as a function of parameters. The original development 

of the theory ( 6 )  has been extended considerably and future publications 

are expected as discussed in a later section. 

The frequency response program computes certain characteristics of 

the frequency response as a function of one or two parameters. 

seven different kindsi,of functional relationships may be obtained (one of 

In all 

which is the well known Bode diagram). 

all parameter pairs that will guarantee a given magnitude ratio at a 

designated frequency; a special case of this would be a constant bandwidth 

curve, i.e., a locus of all points on the parameter plane which provide 

a magnitude ratio of -3db at any specified frequency. Details of the 

program are not given here but are available from the authors. 

For example the program computes 

** This program also was developed for use with the NAVAL P0SIY;RAWATE 
SCHOOL IEM/360 System. (4) . 
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1.3. Linear Time-Varying Systems. 

It has been shown (7) that the parameter method along with the Krylov- 

Bogoliubov method can be used to predict transient responses of linear 

systems where parameters vary in time. Moreover, a time-varying parameter 

can be deliberately introduced into the system to improve its transient 

behavior, Computer simulation results are given to indicate the accuracy ’ 

of the presented technique and its value as a design aid. 

1.4. Squared-Error Minimization with Stability Constraints. 

It is a well knm fact that a minimization of the ntean-squared error 

in linear closed-loop control systems may result in a poorly damped system 

response to deterministic inputs. To improve the results, it is suggested (8) 

to minimize the same performance index with a relative stability constraint 

so that all the characteristic roots have the relative damping coefficient 

greater or at least equal to a prescribed value. A solution of the 

constrained optimization was given in the parameter plane. Future work 

will be devoted to extension of this approach to mlti-variable systems 
.I’ 

where it can lead to &ndamental results in squared-error optimization of 

dynamic systems. 

1.5. Frequency Response on the Parameter Plane. 

The development of a program providing parameter plane studies of 

frequency response has provided the capability for investigating a number of 

interesting situations. A number of linear systems have been studied both 

in thc analysis scnsc and with attcntion t o  clcsign. It has also hccn 

determined that the curve families can be used to analyze and design 

nonlinear open loop systems and nonlinear closed loop systems. Papers 

presenting details are in preparation, but are not sufficiently advanced to 

permit inclusion with this report. 
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1.6. Analytic Design of Compensation. 

It has been shown (9) that the basic Mitrovic' relationships can be 

combined with equations expressing performance specifications and the set ' 

of simultaneous equations thus obtained can be solved to determine a set 

of parameter values that provide the desired conditions. The original 

work was carried out with longhand solution of the simultaneous nonlinear 

algebraic equations on low order problems. A computer approach has bed 

desired for higher order systems. Work is continuing with gradual 

improvement and it is hoped that a useful program will result within a year. 

1.7. Specific Design Problems. 

The Frequency Response Parameter Plane has been applied to a number of 

problems in the desi@ of active and passive circuits. Most of these 

applications (10 - 13) 
investigation (14) "dalysis and Design of Oscillators with Parameter Plane 

ave been too specialized for publication. One 

Methods" has been presented at the 1969 Princeton Conference on Information 

Sciences and Systems, and will be published in the Proceedings of that 

conference. 

We have also applied the basic Parameter Plane to the study of Phase 

Locked Oscillators (15). A paper has been prepared and submitted to the 

IEEE Transactions on Communications Technology. 
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2. ABSOLUTE STABILITY ANALYSIS OF NONLINEAR SY!5"ENS 

2.1. Parameter Analysis. 

In the absolute stability analysis of nonlinear systems (l), the 

nonlinear is not completely specified and it should only belong to a 

certain class of functions. 

linear part are specified numerically, which appears to be a quite 

On the other hand, the parameters of the 

unrealistic assumption. 

stability definition was introduced (16) which relaxes the conditions 

on the linear part and allows system parameters to deviate from their 

nominal values. 

Therefore, a modification of the absolute 

Both the analytical (16) and the graphical (17, 181 

procedures were proposed to determine the absolute stability regions 

in the parameter space. 

absolute stability was derived which is based upon the Routh test (18-20). 

In particular, a simple analytic test for 

The test can be used $0 test positive realness (20). 

2.2. Reeions of Absolute Stability. 

In posing the absolute stability problem, unrealistic assumptions are 

made regarding the structure of the differential equations in order to 

achieve the analytical simplicity of global stability. It is clear that 

physical systems are not globally stable, nor is there any practical 

reason to make them so: 

asymptotic stability sufficiently large. Consequently, a modification 

of the absolute stability problem was proposed (21) to include cases 

with finite regions of asymptotic stability. 

estimates are given, thus providing additional information about how fast 

it is desirable only to make the region of 

In addition, exponential 

I 
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the solutions approach the equilibrium position. Future work should be 

to extend the results to multiple nonlinearities. 

In the context of absolute stability, .forced nonlinear systems were 

considered in which the nonlinear characteristic violates the sector 

condition in the neighborhood of the origin. It is shown (22) that the 

satisfaction of the Popov frequency condition and the boundedness of the 

forcing fbnction and the nonlinearity (where the sector condition is 

violated) imply the exponential boundedness of the system motion. 

Quadratic Liapunov functions are used to obtain estimates of the region which 

system motions edter sooner than an exponential. 

devoted to multiple nonlinearities. 

Future research should be 

2.4. Discrete-Time Systems. 

By using the bilinear transformation, the absolute stability test of 

(18-20) was extended to discrete-time nonlinear systems (23). The research 

currently under way is devoted to conditions under which a discrete-time 

system is exponentially absolutely stable. It seems that the analytical 

test can be extended to verify these conditions. 
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3, APPROXIMAE 

3.1. Nonlinear Transients. 

NONLINEAR ANALYSIS 

Previous investigations (24, 25) have provided methods for calculating 

transients using the parameter plane and describing functions. It has been 

shown that reasonably accurate results obtain for systems with one or two 

nonlinearities when only one pair of complex roots need be considered. 

Extensions have been made to cases with real roots, and with combinations 

of complex roots and real roots. Under this grant these methods have been 

applied to cases in,which two pairs of complex roots contribute significantly 

to the transients. No final conclusions are available, but the accuracy of 

the results does not seem commensurate with the labor required for Computation. 

3.2. Singular Lines and Self Adaptive Systems. - 
The theory of singular lines (1) has been developed in some detail, and 

methods have been developed for designing compensation that produces 

singular conditions in the system (26-28). Some of these results are being 

expanded for publication. 

when it exists in a system, may be used for self-adaptive purposes. A paper’ 

It has been shown that the singular line condition, 

presenting these results has been presented (29) at the IFAC Symposium on 

Sensitivity and Self Adaptivity in Dubrovnik, Yugoslavia, and was published 

in the proceedings of that meeting. 

Recent developments (28) in the technique of designing systems to have 

singular lines have led to a need for continued studies iq this area. 
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CHARACTERISTICS OF THREE PARAmTER SPACE WITH 
APPLICATIONS TO SYSTEM SYNTHESIS* 

Jorge E. CADENA** 

George J. . THALER*** 

Abs t rac t  

C l a s s i c a l  methods f o r  a n a l y s i s  and design of  
systems normally r e s t r i c t  considerat ion to one 
( a t  most two) v a r i a b l e  parameters, but most prac- 
t i c a l  problems r equ i r e  cons idera t ion  of  th ree  o r  
more parameters. For the case  of l i n e a r  systems 
i n  which the c o e f f i c i e n t s  of the c h a r a c t e r i s t i c  
equat ion a r e  l i n e a r  funct ions of  three parameters 
(cornonly encountered p r a c t i c a l l y )  a regl tangular  
coordinate  system may be used t o  def ine  a th ree  
dimensional parameter space. Simple geometric 
c o r r e l a t i o n s  e x i s t  be tween s p e c i f i e d  roo t s  and 
the  sets of parameter values required t~ ob ta in  
them. A r e a l  r o o t  (one p o i n t  on the  s-plane) 
maps i n t o  a plane i n  parameter space. A p a i r  of 
complex conjugate roo t s  map i n t o  a s t r a i g h t  l i n e  
i n  parameter space. 

t i v e  a n a l y s i s  and design of such systems using 
graphica l  techniques i n  two dimensions. These 
lead  to an a lgeb ra i c  approach which permits de- 
s ign  to  obta in  s p e c i f i e d  roo t s  exac t ly ,  b u t  with 
a c a p a b i l i t y  f o r  ad jus t ing  the loca t ions  of  non- 
s p e c i f i e d  r o o t s ,  Numer ica l  i l l u s t r a t i o n s  are 
provided which demonstrate the procedure i n  
detai l .  

Methods a r e  developed which permit w a n  t i  ta -  

1. In t roduct ion  
The design of dynamic systems r equ i r e s  t h a t  numerical values  be 

chosen f o r  many parameters. C l a s s i c a l  design methods (frequency 
response and r o o t  locus)  consider  t he  e f f e c t s  of lonly I_ one ad jus t ab le  
parameter, thus a l l  o t h e r  parameters a r e  usua l ly  determined by t r i a l  
and e r r o r  methods which r e l y  heavi ly  on experience. Mi t rovic ' s  
( R e f . 2 )  in t roduct ion  of a method f o r  consider ing two c o e f f i c i e n t s  of 
the  c h a r a c t e r i s t i c  polynomial provided means for sigorous s tudy of 
some c l a s s e s  of two parameter problems, and extensions by S i l j a k  et.al 
(Ref.4,5,6,7) g r e a t l y  broadened the scope of  c o e f f i c i e n t  plane - para- 

m e t e r  p lane methods, b u t  s t i l l  r e s t r i c t e d  them to two parameter pro- 
b l e m s .  

The use of multi-parameter spaces f o r  a n a l y s i s  and design i s  not  
e a s i l y  j u s t i f i e d  because i n  general ,  w e  do not  know how t o  process 
the  da t a  to obta in  the k ind  o f , r e s u l t s  needed f o r  engineering work. 

* This research w a s  supported by NASA GRANT NCR 05-017-010. 

** Lieutenant Commander, Colombian Navy. 
*** Professor ,  Naval Postgraduate School, Monterev. C a l r i f o r n i  2 



i : A i S  paper extends the two parameter plane to imen a 1  
parameter space by showing the  ex is tence  of c e r t a i n  types of geomet- 
r ic  p r o p e r t i e s  f o r  some of the su r faces  i n  t h ree  parameter space, 
and by applying these  r e s u l t s  to the  ana lys i s  and design of  broad 
c l a s s e s  of feedback c o n t r o l  sys  tems e 

2. Ma thema t i c a l  Bases 
Given a c h a r a c t e r i s t i c  polynomial ( l i n e a r )  

n 

~ ( s )  = lak. k = o 
k=O 

and expressing s i n  p o l a r  coordinates  

-1 where 8 = cos ( - e ) ,  then 

= k(cos  k8i-j s i n  ke)  k ejk8 
n sk = con ( 3 )  

By d e f i n i t i o n  Chebyshev func t ions  of the f i r s t  and second k ind  are: 

Tk(c)  = cos ke = cos (k  cos-’ <) 

from which 

(4) 

S u b s t i t u t i n g  i n  Eq . ( l ) and  r equ i r ing  t h a t  r e a l s  and imaginaries become 
zero independently provides:  

k=O 
n 

k=O 

which permits  reduct ion of E q e (  6) to 
n 

’ k=O 

k=O 
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Now the c o e f f i c i e n t s  a r e  def ined t o  be l i n e a r  funct ions* of three 
parameters 

% = bk& + ckp + d,y + fk (9) 

Considering (x, p# 7 to  be the independent var iab les ,  E q s ,  (8) may 
be rewr i t t en  a s  

B1a + ClP + DIY + F1 = 0 

B20" + C @ + D2y + F2 = 0 2 '  

k=O 

k=O 
n 

k=O 

n 

k = O  
n 

Equations (1) and (10)  def ine  the c h a r a c t e r i s t i c s  of the o!, B, y 
parameter space,  and may be used t o  determine surfaces  with known 
geometric p rope r t i e s .  

3 ,  Real Root Surfaces 
For (2, @, y independent va r i ab le s ,  Eq. (1) may be rewr i t ten  a s  

CXB(s) 4- p C ( s )  + YD(s) + F ( s )  = 0 (12) 

The locus of a l l  po in t s  i n  a, 8, y space f o r  whick (12)  has a r e a l  
r o o t  a t  s = - o1 is  given by 

CIBR + PCR + yD, + FR = 0 (13)  

where BR# cR# DR and F 
t i o n  of -GI €or s i n  (f2). 
i n  a# 8 8  y space; i.e., f o r  a polynomial t o  have a spec i f i ed  r e a l  
roo t ,  the parameters (x, 8,  y must  be chosen such t h a t  the p o i n t  thus 
def ined  l i e s  on a p a r t i c u l a r  plane i n  a# 88 y space. 

a r e  the cons tan t  numbers obtained by s u b s t i t u -  
But Eq. (13) i s - t h e  equation of  a p lane  

- -_  > - 

* Nonlinear fugct ions a l s o  occur i n  p r a c t i c e .  These have been 
. i nves t iga t ed  f o r  the two parameter case,  bu t  a r e  beyond the 

scope of t h i s  paper. 
? 
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The i n t e r c e p t s  of the  r e a l  r o o t  plane with the a,  8 ,  and y axes i 

, are given by 

i a - a x i s  i n t e r c e p t  a t  -CY = - F/B = A a 

(14) 
A 1 - a x i s  i n t e r c e p t  a t  /3 = - F/C = c 

1 y - a x i s  i n t e r c e p t  a t  y = - F/D 2 b i 
I 
i Using these  i n t e r c e p t s  t he  plane can be def ined graphica l ly  i n  a 
: t h ree  dimensional drawing by i t s  th ree  t r a c e s  i n  the  coordinate  planeE 
i as shown i n  Fig. 1. To ob ta in  a usefu l  geometric cons t ruc t ion  which 
; provides two dimensional representa t ion  of l i n e s  i n  the r o o t  plane,  
i note  t h a t  generat ion of an a u x i l i a r y  plane p a r a l l e l  t o  t he  8! coor- 
: d i n a t e  plane and a t  coordinate  y = y1 def ines  a t r ace  MN i n  t h i s  new 

plane  such t h a t  t he  t r a c e  MN i s  p a r a l l e l  t o  the trace ac  i n  the  a /? 
! coordinate  plane.  Rotation of the  a x i s  i n t o  the a6 plane such t h a t  
i y and f l  a r e  c o l l i n e a r  bu t  i n  opposi te  d i r ec t ions  (i.e., + y = -6) pro- 
j v ides  a t w o  dimensional representa t ion  of the root  plane a s  i n  Fig.%. 
j .  

I P 1 

I 

; 

i 

i 

a-axis,  then- the ’consk ruc t ion - l ine  i n t e r s e c t s  the ab t r a c e  a t  po in t  K 



which is the  equation of the  r e a l  r o o t  plane f o r  s = -5. 
ph ica l  p o r t r a y a l  of the  traces is  shown on F i g .  3 .  choice 
meter values i s  v i r t u a l l y  unlimited,  s i n c e  the only c o n s t r a i n t  i s  a 
root a t  s = -5, and th ree  parameters a r e  adju'stable. A s s u m e  t h a t  the  
range of adjustment f o r  01 an4 fi i s  l imi ted ,  and it i s  decided t o  t r y  
Cc = 0 , 5 ,  @ = 0.5. A cons t ruc t ion  l i n e  is  drawn through th 
poin t  p a r a l l e l  to the  C X ~  t r ace ,  l oca t ing  PO c, t h i s  i s  
p a r a l l e l  to  the  y ax is  t o  i n t e r s e c t  the  Ccy tr ice,  thence p ro jec t ed  
to the  y a x i s  t o  determine the required value of y. 

. -  
1 

1.0 

0 . 5  4 

0 

5.0 

1.0 

I .  5 

2.0 

2' .5 

3 ( - y )  

\ 

Fig. 3. Geometric construction to define purarneter 
values for a rea l  root. 

I 



po in t  N' on the @-axis, and a l i n e  p a r a l l e l  t o  the t r a c e  ac,  and 
passing through N '  g ives  the l i n e  M' M' which i s  the  p ro jec t ion  of 
the t r ace  MN (Fig.1) on the plane.  The Cx-6 coordinates  of any 
po in t  on M' N' may be read f r o m  the coordinate  s c a l e s  on Fig. 2,  and 
if these values a r e  used together  with y = y1, the c h a r a c t e r i s t i c  
equation must have a r o o t  a t  s = -D l .  ' T h i s  cons t ruc t ion  permits  pro- 
j e c t i o n  on the a@ plane of a r e a l  root l i n e  ( f o r  s = -ol) a t  any 
chosen value of Y. H o w e v e r ,  repeated use of the cons t ruc t ion  i s  no t  
necessary s ince  the  r e l a t i o n s h i p s  a r e  l i n e a r  and therefore  proport ion.  
al, a f t e r  cons t ruc t ion  of only two l i n e s  a s  ac at y = 0 and M I  N' a t  
y = yl, all other  l i n e s  represent ing  t h i s  root a r e  p a r a l l e l  t o  the 
constructed l i n e s  and wi th  spacings propor t iona l  t o  the  selected 
values of y ,  

, *  

y ,  

b 

P 

Fig. 2 .  T w o  Dimensional represenla 
the real root plant. 

ion o f  

This cons t ruc t ion  method can be used t o  determine values  of a, 
p,  Y which w i l l  provide a des i r ed  real  root f o r  a con t ro l  system, 
Consider a regula tor  wi th  c h a r a c t e r i s t i c  equation: 

s 4 + ( 2  x 10 6 KlO+ 1350)s 3 + ( 3  x 10 8 KIO+ 4 x 10 8 K11+3.85 X 10 5 2  1s -!- 

(15) 
( lOloKl0+  2 x 1010~11+36 x 10 6 ) s  + - 2  x l O l 0 K  K 1-2.1 x lo1'= 0 

a P  
. .  A 

* A  = p, KaKp = n y and ' rear range  to 11 L e t  K10 = Q, K 

( 2  x 10 6 3 .  s +3 x 10 8 2  s +101OS), +(4  x 10 8 2  s 4- i x l 0 l0s )8  -t- 

(16) 
2 x 101*yt(s4,13S~s3+3.85 x 10 5 2  s 4-36 x 10 6 s-f-2.1 x 10 10 ) = 0 

Next  choose the des i r ed  r e a l  r o o t  value; 
becomes 

l e t  s = -5. Then (16)  

- 4 2 7 5 ~ t  - gOoO@ + 2000y + 2.082.95 = 0 (17) 
___I____--- __-. ~ - -.- _ _  

I _  



Ir i t  i s  des i r ed  t o  spec i fy  - t w o  r e a l  roots ,  then each r o o t  value 
i s  s u b s t i t u t e d  i n t o  the c h a r a c t e r i s t i c  equation r e s u l t i n g  i n  an equa- 
t i o n  of a plane.  The i n t e r s e c t i o n  of these two planes i s  a s t r a i g h t  
l i n e ,  thus the  only values  of Cy, p ,  y which provide both r e a l  roo t s  
are the  coordinates  of po in t s  on t h i s  l i n e .  Tke p ro jec t ion  of  the 
d e s i r e d  real  r o o t  l i n e  o n t o  the afi plane may be determined by graphic- 
a l  p ro j ec t ion  o r  by simultaneous equation so lu t ion .  Proceeding gra- 
ph ica l ly ,  f i n d  the  p o i n t  H a t  which the l i n e  pierces the a8 plane by 
s e t t i n g  y = 0 i n  both of the  plane equations,  and so lve  the r e s u l t i n g  
two equations i n  a and 9 f o r  the  coordinates  of the p i e r c e  poin t .  I n  
l i k e  manner f i n d  the  p i e r c e  p o i n t  G i n  the  Ory plane by s e t t i n g  = 0 
i n  the two equat ions and solving. Project this l a t t e r  p o i n t  onto the-  
Q1-axis t o  ob ta in  p o i n t  F. The l i n e  FH is  the  desired p ro jec t ion  of 
the l i n e  along which the  r e a l  r o o t  planes i n t e r s e c t .  The coordi-  
na t e s  of any p o i n t  on t h i s  l i n e  def ine  two o f  the th ree  required para- 
m e t e r  values.  * The value of ' y  i s  determined b$ l i n e a r  i n t e r p o l a t i o n  
(or ex t rapola t ion)  s i n c e  a y scale i s  r e a d i l y  e s t ab l i shed  along the  
l i n e ,  i.e.8 a t  p o i n t  H i t  i s  known t h a t  y = 0, and a t  p o i n t  F the  
value of y is  the  same a s  the  y coordinate  of  po in t  G. 

by s e t t i n g  y = 0 and so lv ing  the r e s u l t i n g  eqanations f o r  Q1 and 6. 
A second p o i n t  on the des i r ed  i n t e r s e c t i o n  l i n e  i s  found by choosing 
another value f o r  y and again so lv ing  f o r  (x and P I  A s t r a i g h t  l i n e  
on the 019 plane  which passes  through these poin ts  i s  the des i r ed  pro- 
j e c t i o n .  

such a s  ( 1 3 ) .  Thus the re  are th ree  equations i n  three  parameters and 
an a lgeb ra i c  s o l u t i o n  provides unique values  of Cy, p,  y .  

a t  the s p e c i f i e d  loca t ions ,  They do no t  guarantee t h a t  such roo t s  
w i l l  be dominant. Neither do they g ive  any information a s  t o  the  
loca t ion  of any unspec i f ied  roots .  These f a c t o r s  m u s t  be considered 
when the methods a r e  used f o r  system synthes is ,  

A l t e rna te ly  the  CxP p i e r c e  p o i n t  i s  found as previously ind ica t ed  

If three r e a l  roo t s  a r e  s p e c i f i e d  each root def ines  an equation 

I n  genera l  these methods guarantee t h a t  roo ts  w i l l  be obtained 

.s; 

4. Complex Roots 
r .  . 

 or a p a i r  of complex roo t s  a t  s = - I W  7 juJ1-cL, app l i ca t ion  
of equations (8) provide a p a i r  of l i n e a r  efquakioRs (10) .  Each of 
these equat ions de f ines  a plane,  and the i n t e r s e c t i o n  of these planes 
is a s t r a i g h t  l i n e .  Therefore a p a i r  of complex conjugate p o i n t s  i n  
the  s-plane map i n t o  a s t ra ight  l i n e  i n  the 01, p t  y parameter space. 
This s t r a i g h t  l i n e  can be pro jec ted  onto the  plane,  wi th  y s c a l e  
for the  l i n e ,  by exac t ly  the  same procedure a s  used ~ t o  project '  the 
i n t e r s e c t i o n  of two r e a l  r o o t  planes.  Thus the values  of parameters 
a, Is, y requi red  t o  ob ta in  a s p e c i f i e d  p a i r  of complex r o o t s  can be 
read  from a two dimensional p l o t .  

If a t h i r d  r o o t  ( r e a l  roo t )  i s  a l s o  spec i f ied ,  then i t  def ines  
a t h i r d  equation. Simultaneous s o l u t i o n  of the three  equat ions g ives  
a unique r e s u l t  f o r  a, B t  y. 

1 '  

5. I l l u s t r a t i v e  Design, Complex Roots . 
1 For the system of Fig. 4a the cha rac t e r i sk i c  equation i s  

s4 +"16.5s3 + ( ( r+73)s2 + (p+82.5)s + [y+25) =. 0 
I 
I 

where Q1 = = KKt, y = KKl. For a des i red  r o o t  a t  = 0.5 and 
-Cdn = 2.0, t he  equations of the two plane's become KKa, 

4a - 7 + 135 = 0 

, *  4a -2p + 110 = 0 



I K 1 
I I 

t (st 0.5) ( s f  I )  (si-5) (s4-IO) YI- 
> k, s 2 + kTs 

J 

Fig. 4a. Block diagram of a three  parameter s y s t e m .  

The equation 4CY-2@+110=0 def ines  a p lane  p a r a l l e l  to the  y-axis, 
and i s  a l s o  the equation of i t s  i n t e r s e c t i o n  with the  Cc-8 plane. Be- 
cause t h i s  plane conta ins  the  desired l i n e ,  the pro jec t ion  of t h i s  l i n e  
on the a@ plane i s  given by the same equation, and the y scale on thir  
l i n e  is def ined by the  equation of the  o the r  p l ane , i . e , ,  49s-y-t135=0. 
The des i r ed  l i n e  on the (2-p plane i s  given on Fig.4b. 

I n  t e r m s  of design i f  i t  i s  des i r ed  t h a t  a l l  gains  be p o s i t i v e ,  
then a po in t  must be chosen on t h a t  po r t ion  of the l i n e  which l i es  i n  
t h e  f i r s t  quadrant on Figo4b. However, i t  might be des i r ab le  t o  permit 
p o s i t i v e  acce le ra t ion  feedback (Ka nega t ive) ,  i n  w h i c h  case the oper- 
a t i n g  p o i n t  could be chosen i n  the  second quadrant.  Any choice along 
t h i s  l i n e  def ines  values f o r  01, and y which guarantee roo t s  a t  %=-0,5 
and Wn=2.00 Values of the  two unspecif ied roo t s  a r e  no t  indicated,and ' 

I 
must be checked because t h e i r  l oca t ions  change w i t h  values of d y ,  B and ' 

I y ,  and some choices of these parameters could provide unspecif ied 
roo t s  with unsui tab le  values .  I 

i 
I 6 ,  An Alqebraic-Graphic Extension of the  Design Procedure 

A system with th ree  independent parameters,  Q, p,  y, has three  de- , 
grees  of freedom. When s p e c i f i c a t i o n s  r equ i r e  t h a t  a c e r t a i n  p a i r  of ' 

I r o o t s  a r e  to be obtained, two degrees of freedom must be used to guar- 
an tee  t h i s .  The t h i r d  degree of freedom may then be used to a d j u s t  1 the  loca t ions  of  a l l  o t h e r  roo t s ,  Because of  t h i s  i t  i s  poss ib l e  to  
de f ine  a func t iona l  r e l a t i o n s h i p  between a l l  unspecif ied r o o t s  and 
any one of the parameters.  The procedure is a s  follows: i 

I 

I 

a ,  W r i t e  the  c h a r a c t e r i s t i c  equation of the system and also the  
quadra t ic  def ined by the spec i f i ed  roo t s ,  

b. Divide the quadra t ic  i n t o  the c h a r a c t e r i s t i c  equation obtain-  
i n g  a quo t i en t  and two remainder terms. 

c. I n  order  f o r  t he  s p e c i f i e d  r o o t s . t o  be roo t s  of the  charac- 
teris t i c  equation the remainder t e r m s  must be i d e n t i c a l l y  
zero f o r , a n y  s ,  Therefore the t w o  remainder terms may each 
be set  to  zero, and together wi th  the  quo t i en t  they form 
three  equat ions i n  three  parameters . 

d. Subs t i t u t ion  of the remainder terms i n t o  the quo t i en t  reduce 
the quot ien t  to a polynomial i n  s with one parameter. Then 

_. - the quot ien t  may be used to def ine  a roo t  locus which shows 
the loca t ions  of t he  ,unspecified roo t s  as funct ions of one 
parameter. 

t i o n  of the r o o t  locus.  
e. The value of t he  t h i r d  parameter i s  then chosen f r o m  inspec- 

Applying t h i s  procedure to the  i l l u s t r a t i o n  of the preceding sec. 
t i o n ,  the c h a r a c t e r i s t i c  equation i s  (18) and f o r  roo t s  a t  = 0.5 

- _ -  - _ _ _ _  _.-_ - - - - ---- -_  . 



and Un = 2.0 the quadra t i c  i s  

s2 4 2s 4 4 = 0 

Dividing (20)  i n t o  (18) the quo t i en t  i s  

s2 4 14.5s 4 [Y + 40 = 0 

and the remainder equat ions are 

-4CX + 7 - 135 = 0 

55.5= 0 -2a + @ - 

Fig. 4 b  
Pro jec t i on  of 

complex root line 
on t h e  a /3 plane. 

? 

- _  

50 

2 5  

a=Kka * I 
I 

2 5  5 0  

- 25 

-50 



Since Eq. ( 2 1 )  happens t o  be a funct ion of one va r i ab le  only,  no 
manipulation is needed. To g e t  Eq, (21)  i n  roo t  locus form, rearrange 
t o  

(23) - -  a 
s2 -t- 14.5s + 40  

- 1  

Factor ing the  denominator (23) becomes 

(24) - 1  - -  

The r o o t  locus f o r  (24) i s  shown on Fig. 5, on which a r e  a l s o  marked 
the  s p e c i f i e d  roo t s ,  The unspecif ied r o o t s  may be forced to  a non- 
dominant l oca t ion  such as s = -7.35 3 j 3.37 by choosing a - =  24. 
s u b s t i t u t i o n  i n t o  Eq. ( 2 2 )  provides fl = 103.5 and y =231. 

a 
( s  -t- 10.995) ( s  3. 3.705) , 

Then 

* #  I 
A I  

-10 

?oat Locus 

a = 2 4  

- 5  

a = 2 4  

w 

10 

5 Specified Roots 

-5 

-10 
Fig. 5. Root Locus for 
un s peci f i e d roots. 

7. Conclusions 

m e t e r  space provides use fu l  information f o r  ana lys i s  and design. When 
the  func t iona l  r e l a t i o n s h i p  between c o e f f i c i e n t  and parameters i s  
l i n e a r ,  geometric i n t e r p r e t a t i o n s  are poss ib le .  24 r e a l  r o o t  of the  
c h a r a c t e r i s t i c  equation def ines  a plane i n  th ree  space, and t w o  r e a l  
roots def ine  a s t r a i g h t  l i n e  which i s  the i n t e r s e c t i o n  of two planes.  
I n  l i k e  manner a p a i r  of complex r o o t s  def ine  a sk ra igh t  l i n e  i n  three 
parameter space. 

Methods have been presented f o r  ob ta in ing  pro jec t ion  of such 
l i n e s  on a plane and for  using such p ro jec t ions  in ana lys i s  and desigr  
A n  a lgebra ic  procedure has  been evolved from the graphical  procedures 
which promises t o  be even more valuable i n  the design of mult ivar iable  
sys  terns. 

Extension of parameter plane equations to  degine a th ree  para- 
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SYNTHESIS O F  SYSTEMS WITH 

DOMINANT COL'PLEX ROOTS 

J, E, Cadena G ,  J, Thaler 

ABSTRACT: Systems with th ree  ( o r  more) free parameters a r e  

considered, Predetermined loca t ions  are assigned t o  one pair  

of complex roo t s ,  and t h e i r  ex is tence  i s  guaranteed by assign- 

ing  two degrees of freedom ( t w o  parameters) t o  c o n s t r a i n  them 

to the  des i r ed  loca t ion ,  The c o n s t r a i n t s  a r e  used t o  con- 

s t r u c t  a reduced c h a r a c t e r i s t i c  equation from which the  as- 

signed parameters have been eliminated. The polynomial thus 

obtained def ines  the loca t ions  of a l l  r o o t s  except the  speci-  

f i e d  complex p a i r ,  and ( f o r  the case  of t h r e e  parameters) a 

r o o t  locus study permits  choice of a value of the t h i r d  para- 

meter such t h a t  t he  root p a t t e r n  i s  compatible wi th  a domi- 

nance requirement f o r  khe s p e c i f i e d  complex p a i r ,  
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I NT RODUC T I ON 

C l a s s i c a l  methods f o r  t he  design of  feedback c o n t r o l  sys- 

t e m s  normally s t r i v e  t o  achieve d.ominance of a p a i r  of complex 

roo t s ,  These r o o t s  may be designated i n d i r e c t l y  ( i n  t e r m s  o f  

phase margin and ga in  margin) when using frequency response 

methods, o r  d i r e c t l y  ( i n  t e r m s  of 2: and Wn or CT and W> when 

using s-plane methods. When an e r r o r  c o e f f i c i e n t  i s  s p e c i f i e d  

so lu t ion  of the  design problem becomes d i f f i c u l t ,  I f  fre- 

queficy response methods a r e  used  cascade compensators may be 

designed b u t  t r i a l  and e r r o r  i s  required and the answer i s  

approximate, while  the design of feedback compensation i s  s t i l l  

m o r e  d i f f i c u l t ,  Using Root Locus methods seve ra l  techniques 

(2,3,4,5,6,10) have been developed which permit design of 

cascaded compensators to achieve a desired loca t ion  of complex 

roo t s  toge ther  wi th  the s p e c i f i e d  e r r o r  c o e f f i c i e n t .  These 

methods can g ive  p r e c i s e  answers without excessive labor ,  bu t  

do not  provide guidance to a l t e r n a t e  so lu t ions  when the  o r i g i -  

n a l  s o l u t i o n  i s  mathematically c o r r e c t  b u t  p r a c t i c a l l y  unde- 

s i r a b l e  

I n  l i k e  manner the  problem (of designing cascade compen- 

s a t i o n  t o  achieve roo t s  a t  designated loca t ions  while s a t i s -  

fying an e r r o r  c o e f f i c i e n t  requirement) can be solved alge- 

b r a i c a l l y  ( 2 )  U s e  of the  Mitrovic ' s r e l a t i o n s h i p s  provides  

two simultaneous equat ions which may be solved to determine 

the requi red  loca t ions  of the pole  and zero of the compensator. 

2 



A l l  of  these s-plane methods provide roo t s  a t  t he  speci-  

f i e d  loca t ions ,  and. a lso provide th& spec i f i ed  e r r o r  c o e f f i -  

c i e n t #  b u t  they do n o t  guarantee s t a b i l i t y  and they do no t  

guarantee t h a t  the  s p e c i f i e d  r o o t s  w i l l  be dominant, These 

requirements must be ver i f ied a f t e r  the design has  been 

c a r r i e d  out ,  

I n  genera l  the methods developed thus f a r  e s t a b l i s h  re- 

l a t i o n s h i p s  between two parameters which must be s a t i s f i e d  i n  

order  t o  fo rce  two r o o t s  t o  desired loca t ions ,  

Because the re  are only two degrees of freedom the  solu- 

t i o n  i s  uniquep and may be unacceptable i f  t he re  has  been an 

unfortunate  choice of o the r  parameters,  I n  thj-s paper a new 

concept i s  combined wi th  w e l l  known techniques t o  guarantee 

the  des i r ed  roo t  l oca t ions  and a t  the same t i m e  permit ad jus t -  

ments for  s t a b i l i t y  and f o r  dominance of the  des i r ed  roo t s ,  

THEORY 

The c h a r a c t e r i s t i c  equation 05 a dynamic system may be 

developed from the system t r a n s f e r  func t ions  (o r  o the r  mathe- 

mat ica l  model) with c o e f f i c i e n t s  expressed a s  funct ions of the  

system parameters,  This c h a r a c t e r i s t i c  equation may be 

expressed as 

n 1 apk = 0 

k = O  

3 



I f  m des i r ed  r o o t  l oca t ions  are chosen (m < n ) ,  they def ine 

an mth order  polynomial 

m 
kl c akls . = 0 

k l=O 

Formal d i v i s i o n  of ( 2 )  i n t o  (1) provides a quo t i en t  and a 

r ema nde r 

k = O  

. * .  + a +- WWINDER (3)  n-m-1 + a  S 
n-ro a s  n-m n-m-1 0 

The system i s  guaranteed t o  have the m des i r ed  roo t s  i f  the 

Remainder i s  i d e n t i c a l l y  zero,  

There i s  nothing r e a l l y  new i n  r e l a t i o n s h i p s  1,2,3, b u t  

proper  i n t e r p r e t a t i o n  provides a new and use fu l  technique f o r  

ana lys i s  and design. The new concept i s  t o  use the Remainder 

and the  quo t i en t  t o  s tudy the  non-specified roo t s  and p l ace  

them i n  l o c a t i o n s  which guarantee s t a b i l i t y  of the system and 

dominance of some s p e c i f i e d  roots .  Note t h a t  i f  the Remainder 

is zero,  then the  quo t i en t  i s  a polynomial t he  r o o t s  of which ' 

are the  non-specified r o o t s  of  the c h a r a c t e r i s t i c  equation, 

The Remainder conta ins  m t e r m s ,  each of which must be zero 

f o r  a l l  values  of s I  and thus the  Remainder def ines  m-equations 

i n  p-parameters, The quot ien t ,  when set  to zero, provides  one 
I 

on i n  p-parameters ( o r  less than p ) -  

4 



I f  the  system ( i e e a  , the polynomial of E q ,  (1) ) conta ins  

exac t ly  the same number of parameters as the re  a r e  spec i f i ca -  

t ions ,  i , e , ,  i f  p m ,  then the  remainder de f ines  m-equations 

i n  m-parameters which may be solved simultaneously for unique 

numerical values  of these parameters,  The c o e f f i c i e n t s  of the 

quo t i en t  are thus def ined numerically and no adjustments a r e  

poss ib l e ,  This s i t u a t i o n  i s  exac t ly  the problem of R e f .  1-6, 

and the s o l u t i o n  i s  a l s o  the  same ( i e e m ,  the s a m e  values  a r e  

obtained €or the parameters) .  This method has  some advantage 

i n  t h a t  i t  may be used f o r  m = p = 2,3,4 etc , ,  while the r o o t  

locus methods a r e  normally res t r ic ted t o  m = p = 2. 

When p m, then the m-equations from the remainder may 

be solved f o r  m of the parameters,  each o€ these so lu t ions  

being i n  terms of the remaining p-m parameters,  Subs t i t u t ion  

of these r e s u l t s  i n t o  E q . ( 3 )  provides a polynomial wi th  coef- 

f i c i e n t s  expressed i n  t e r m s  of p-m parameters,  Equation ( 3 )  

becomes 

where n-m; D = D(p-m) 

Equation 4 de f ines  t h e  non-specified r o o t s  of the system 

i n  terms of p-m parameters,  By stud-ying the loca t ions  of the 

r o o t s  of (4) a s  funct ions of the p-m parameters,  a choice can 

be made f o r  the  values  of these  parameters,  I f  t he re  e x i s t s  
. .  

- -  a range of parameter values  such t h a t  a11 r o o t s  of (4) a r e  i n  



t he  l e f t  h a l f  of  the  s-plane,  then a choice of parameter values  

wi th in  t h i s  range guarantees s t a b i l i t y  of the  system, I%, 

alsop t he re  i s  a sub-set  w i th in  t h i s  range f o r  which a p a i r  

of the  s p e c i f i e d  r o o t s  are dominant, then the  choice of t he  
I 

parameter values wi th in  t h i s  sub-set  guarantees both s tab i l i -  

t y  and dominance, I n  e i t h e r  case  the chosen p-rn parameter 

values  are then s u b s t i t u t e d  i n t o  the  s o l u t i o n  of the remainder 

equ.ations t o  determine the remaining m-parameter values  I t  

i s  important t o  note  t h a t  f o r  any choice of the p-m parameters 

the s p e c i f i e d  r o o t s  a r e  obtained exac t ly ,  i n  add i t ion  the non- 

s p e c i f i e d  roo t s  a r e  exac t ly  those used i n  s e l e c t i n g  the  p-m 

parameter values  

For many p r a c t i c a l  ca ses  study of the roo t s  of Eqo(4) may 

be accomplished by wel l  known methods, When p-m = 1, Eq, 

(4) provides a conventional r o o t  locus,  When p-rn = 2 a lgeb ra i c  

manipulation removes a l l  b u t  two parameters from Eq, (4) which 

may then be s tud ied  by parameter plane methods. I f  p-rn 2 

the p a r t i c u l a r  methods used depend on the  s p e c i f i c  problem, 

ILLUSTRATIONS 

The manipulations involved i n  applying the method are 

very simple. 

f i c u l t  problems, The a lgeb ra i c  equations involved are non- 

They work s u r p r i s i n g l y  w e l l  on some r a t h e r  d i f - -  

l inear ,  though, and thus the  method does 

e a s i l y ,  The best way t o  show t h i s  s e e m s  

i l l u s t r a t i o n s  : 

not  always work 

t o  be by s p e c i f i c  

6 



CASE I,  Type Z e r o  System with three free parameters (Fj-g-1) 

Dominant complex r o o t s  des i r ed  wi th  < = 0,5  and 

Wn = 2-0, Evaluate  pI ka and k t e  

Solu t ion  2 T h e  sys tern charac teris t i c  equat ion i s  

s5+(p+50) s 4 +(875+50p) s3+(6250+875p+1O0ka)s 2 +(15000+6250p-t10!3rt~ s 

-I- 15OOOp-t-100 = 0 (5) 

( 6 )  
2 The s p e c i f i e d  r o o t s  de f ine  the  quadra t i c  s -1-2s+4 = 0 

Dividing (6)  i n t o  (5) the  q u o t i e n t  i s  

3 2 s -I- (48-tp) s + (771+48p) ~+4616+775p+lOOk~ (7 )  

w i t h  remainder: 

(450p-200ka+100kt+2684) sc11900p-400ka-18364 (8) 

Each of these  remainder c o e f f i c i e n t s  must be zero, thus:  

4 .508~ - 200ka + l ook t  + 2684 = 0 (9) 

1 1 9 0 0 ~  - 400ka - 18364 0 

l O O k  = 2 9 7 5 ~  - 4591 a From (10) 

S u b s t i t u t i n g  (11) i n  (7) 

s3 -I- (p+48)s2 + (48p-1-771)s 1- 3750p + 25 = 0 ( 1 2 )  

P a r t i t i o n i n g  ( 1 2 )  p ( s2  f 48s + 3750) z= -1 
s3 -!- 48s2 -!- 771s -I- 2 5  

The r o o t  locus  €or (13) i s  shown on Fig-2,  Note that  th i s  

locus  de f ines  the va lues  of the three unspec i f ied  roots as 
. .  

7 



func t ions  of p only,  The s p e c i f i e d  complex roo t s  have been 

superimposed on Fig.2 for convenience. p i s  chosen t o  i n -  

s u r e  dominance of the s p e c i f i e d  roots ,  For example, choosing 

a real  r o o t  a t  s = -30 g ives  p = 2.15; s u b s t i t u t i o n  i n  

(11) gives  ka = 18.09, and f u r t h e r  s u b s t i t u t i o n  i n  (9) g ives  

k t  -87 -66 .  

CASE 11, Type 1 system wi th  fou r  free parameters (Pig.3) ., 
Dominant complex r o o t s  des i red  a t  s = - 1 T j3. 

Error  c o e f f i c i e n t  to be Kv = 1.0, Evaluate K1, K2, 

K t 8  P* 

Solut ion:  The c h a r a c t e r i s t i c  equation of the system is: 

Note t h a t  the parameters appear i n  product corrbinations, 

The required roo t s  de f ine  the polynomial 

s2 -t 2s  3. 10 = 0 

Dividing (15) i n t o  (14) the quo t i en t  is:  

s2 + ( l+p)  s + (-lO+p+Klkt) 

and. the  remainder terms de f ine  

10 - l op  + Klkt(p-2) = 0 

100 - 1Op - 10Klkt t K1p + K1K2 = 0 

The K s p e c i f i c a t i o n  de f ines  
Y .  

- 2p - 2K k p t K1p 0 - K1K2 1 t  
--.. (19) 

8 



Solving (17) (18) , (19) gives  a unique r e s u l t  f o r  p ( t h i s  

means that the  fou r  free parameters c o n s t i t u t e  only t h r e e  

independent parameters) : 

p = -1-5 ,,/- = 5.7287 OX -8.7287 

Choosing the  p o s i t i v e  value provides:  

p = 5.7287; IC1 = 10, k t  = 1,268, K2 = 2-67 

and the  t w o  remaining roo t s  a r e  s = -3-36 T- j l e 7 *  Note t h a t  

i n  t h i s  c a s e  t h e r e  w e r e  no "excess" free parameters which 

could be adjus ted  t o  ob ta in  acceptable  values  f o r  the  unspe- 

c i f i e d  r o o t s ;  the s o l u t i o n  obtained i s  unique, and the  r e s u l t  

may o r  may n o t  be acceptable.  

CASE 111, Type 1 system wit11 fou r  free parameters (Fig-4)  

Evaluate K, z ,  pI  kt f o r  roo t s  s p e c i f i e d  a t  

-5 j10- 

For t h i s  sys  t e m  t he  c h a r a c t e r i s  t i c  equat ion i s  

s4 -+ (l0-t-p)s3 -+ (25+100kt+10p)s2 -t- 

(25p-t-loop ktflOOK)s -+ fOOKz = 0 (20) 

The s p e c i f i e d  roo t s  de f ine  the  polynomial 

s2 -+ 10s  -i- 1 2 5  

Dividing (21)  i n t o  (20) the  quo t i en t  i s  

s2 -+ ps -+ lookt  - 100 

9 



and the  remainder terms are 

loop k t  - loop -I- lOOK - l ook t  -i- L O 0 0  = 0 

100 KZ - 12500kt 4- 12500 = 0 (24) 

(23) 

Since only two r o o t s  have been s p e c i f i e d  (23) and (24) def ine  

the r e l a t i o n s h i p s  among the  fou r  parameters, b u t  two suck 

equations a r e  not  enough to permit e l imina t ion  of one v a r i -  

able from ( 2 2 ) .  Thus i t  i s  easier t o  proceed by studying 

( 2 2 )  on the parameter plane (7,  8, 9) of F ig-5 ,  Note t h a t  

any choice of p and kt on Fig,  5 def ines  the  loca t ions  of t he  

t h i r d  and fou r th  r o o t s  of (14) s i n c e  the primary roo t s  have 

a l ready  been cons t ra ined  t o  s = -5 j l 0 ,  The remaining para- 

meters, K and z ,  may be determined by s u b s t i t u t i o n  of p and 

k t  i n  the remainder constraints of (23) and (24) e 

I n  order  t o  ob ta in  acceptab le  values f o r  the pa rane te r s  

with m i n i m u m  t r i a l  and e r r o r ,  (23) and (24)  may be p l o t t e d  

as shown on Fig-6 ,  Inspec t ion  of Fig-6 shows t h a t  p and k 

cannot be chosen a r b i t r a r i l y  i f  K and z are to be p o s i t i v e  

numbers. I t  appears t h a t  t he  choice i s  r e s t r i c t e d  t o  

kt 
inspec t ion ,  and a number of a l t e r n a t e  p o s s i b i l i t i e s  can be 

explored r ap id ly ,  

t 

1-0; p < 10, An i n t e l l i g e n t  choice can be made by 

Since the system has four  f r e e  parameters and only two 

a r e  requi red  t o  c o n s t r a i n  the  dominant roots, a d d i t i o n a l  con- 

s t r a i n t s  can be appl ied.  For example, i f  i t  i s  des i r ed  t o  
* .  
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cons t r a i n  the  e r r o r  c o e f f i c i e n t  the  c o n s t r a i n t  equati-on i s  

LOOKz 
p ( 25+100kt) = Lim s G ( s )  = 

S'O 
Kv 

from which 

(25p+lOOpI~~)I<~ = 100 KZ 

b u t  from (24.) 1 0 0 K z  = 12500(kt-1) 

S u b s t i t u t i n g  (26) i n t o  (25a) and manipulating 

pKv 3. 500 - 
kt - - 4pKV- 500 

Eq,  

d ina t e s  a s  i n  Fig.7a, o r  a s  a fa-mil-y of curves on parameter 

plane coordinates  a s  i n  Fig.7be Then, using the curves of 

Figs,5,  6 ,  and 7,  any choice of an opera t ing  po in t  def ines  

values  f o r  p,  k t ,  K,  z ,  and Kv, whi le  r e s t r i c t i n g  the  spec i -  

f i e d  r o o t s  to s = -5 'f j l 0 .  

(27 )  may be plotted.  as a s i n g l e  curve on normalized coor- 

CONCLUSIONS 

A s i m p l e  a lgeb ra i c  method has  been presented which per- 

mits study and design of mul t ip l e  parameter systems wi th  p r e  

s p e c i f i e d  loca t ions  f o r  s o m e  o f  the c h a r a c t e r i s t i c  roo t s .  

Determination of a s u i t a b l e  set of  parameter values  may be 

c a r r i e d  o u t  i n  an e n t i r e l y  algebraic fashion,  o r  wikh the 

a s s i s t a n c e  of graphica l  tools such a s  the r o o t  1ocu.s and t h e  

parameter plane,  
. .  
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r a t e l y  i n  a matr ix  formulation. I n  many phys ica l  systems the  
c o e f f i c i e n t s  are l i n e a r  funct ions of the parameters 

, .  
- 1- 

A MATRIX APPROACH TO 
PARAMETER ANALYSIS OF DYNAMICAL SYSTEMS* 

a n t  KARMARKAR** 

George J. THALER*** 

Abstract  

The response of a dynamic system t o  a command 
or a dis turbance depends on t h e  values of the para- 
m e t e r s  which comprise t h a t  system. Analysis of  
system performance i n  t e r m s  of the  r e l a t i o n s h i p s  
between parameters and roo t s  of the c h a r a c t e r i s t i c  
equation i s  therefore  a very d e s i r a b l e  procedure, 
and leads  t o  a n  i n t e l l i g e n t  choice of  parameters f o r  
a f i n a l  design. 

a n a l y s i s  ( R e f .  1 ,2 ,3 ,4 ,5 ,  .) methods i n  recent years ,  
the  m o s t  e f f e c t i v e  of which have been the parameter ~ 

plane  (Ref. 1 ,2 ,3 , .  . .) methods which permit d i sp l ay  
of the  parameter vs. r o o t  c o r r e l a t i o n s  with a two 
dimensional family of curves.  Parameter plane tech- 
niques t r e a t  the problem a s  a two parameter problem. 
The r e s u l t i n g  equat ions can be programmed and the  
curve f ami l i e s  p l o t t e d ,  b u t  s p e c i a l  programs must be 
w r i t t e n .  This paper approaches the problem from the 
viewpoint of an n-dimensional parameter space,(Ref.6) 
and formulates the problem i n  matr ix  form. The pro- 
b l e m  i s  then reduced t o  a two parameter problem i n  
o rde r  to  ob ta in  the  advantages of graphica l  presenta-  
t i on ,  b u t  the matr ix  formulation permits  d i r e c t  solu-  
t i o n  using s tandard  matr ix  subrout ines  so t h a t  t he  
programming e f f o r t  i s  minimal. S l i g h t  a d d i t i o n a l  
modif icat ions permit simultaneous s t u d i e s  of s ens i -  
t i v i t y ,  s t a b i l i t y  and o t h e r  f e a t u r e s  of i n t e r e s t .  

There has  been considerable  s tudy of parameter 

1. Matrix Formulation of the Parameter Space 

c h a r a c t e r i s t i c  equation. The c h a r a c t e r i s t i c  polynomial may be definec 
The dynamics of l i n e a r  systems a r e  def ined by the roo t s  of the I 

N 
l a k s k  = 0 

a = bkQl+c @+ y-t-ek6 + - 0 -  + kk k k , %  

* This research  was supported by NASA GRANT NGR 05-017-010 
** Ass i s t an t ,  Department of E l e c t r i c a l  Engineering, Universi ty  

*** Professor ,  Department of E l e c t r i c a l  Engineering, Naval Post-  

t 

of Santa Clara ,  Santa Clara ,  Ca l i fo rn ia  

, 
_ .  i I graduate School, Monterey, Cal i forn ia .  .% 
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The func t iona l  r e l a t i o n s h i p s  between the  coeff  
of a polynomial a r e  w e l l  known and are the b a s i s  f o r  t 
mulation of the  problem, When aN = 1 , 0 1  the following 
ob ta in  
m u 

a 

a 

a 

a 

N - 1  

N-2 

N-3 

N-4 
. 
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which may be r e w r i t t e n  

L.1 = L R 1  
I n  normal problems the A matr ix  and the  R matr ix  a r e  not  known 

( i . e O t  numerical values  a r e  no t  known), The C matr ix  i s  completely 
known, and the  P matrix,  by d e f i n i t i o n ,  conta ins  the va r i ab le s  t o  be 
s tudied ,  These r e l a t ionsh ips ,  then, def ine  a N-dimensional parameter 
space. Spec i f i c  so lu t ions  a r e  not  ava i l ab le ,  howeverc unless  more 
information i s  ava i l ab le ,  i , e . ,  unless  s p e c i f i c  c o n s t r a i n t s  a r e  
placed on the roots, 

m e t e r  p lane curves can be obtained, two r o o t s  a r e  s p e c i f i e d  a s  a com- 
p l ex  conjugate p a i r ,  (which permits use of two parameters,  say a! and 
p ) .  I n  addi t ion ,  then, specific numerical values  must be assiqned 

To reduce the  problem t o  a two dimensional space so t h a t  para- 

f o r  a l l  add i t iona l  parameters,  y, 6, etc,  The matr ices  then become . .  
a! 
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Y 
0 
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' * w h e r e  a l l  parameters except eY and 
. the r i g h t  hand side i s  obtained by removing the s p e c i f i c  complex p a i r  

The only unknown q u a n t i t i e s  are the  two 

a r e  now known numerically,  and I 

of roots* from the  R matr ix ,  
parameters Q and p,  and t h e  roo t  combinations N-2 N-2 i .  

R 2 0 - 0  RN-2° ' 

N-2 
R 1  

Each row of the matr ix  i s  rearranged, p u t t i n g  unknowns on the  LHS and 
values  on the RHS, y ie ld ing  known numerical 
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of E g o  ( 5 ) ,  the  r e s u l t  i s  

- 
A f t e r  rearrangement of the  RHS 
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0 
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F r o m  t h i s  form so lu t ion  f o r  CY and is  obtained using s tandard matr ix  
subroutines 

. .  

* Eq.-(4) s p e c i f i e s  complex r o o t s  ( i n  rec tangular  coordinates)  a t  
a r e  des i r ed  s = -5w 7: j w n R a n d  n s = -0 7 jo. If p o l a r  coord 

the corresponding matr ix  i s  



1 The r o o t s  of ( 7 )  a r e  p r e c i s e l y  the  remaining N-2 r o o t s  of Eq, (1). 1 

: Having obtained the  c o e f f i c i e n t s  of (7) by s o l u t i o n  of (6), (7) may be 
solved by any root-f inding subrout ine,  thus eva lua t ing  a l l  of the i 

1 o the r  r o o t s  of the  polynomial for each chosen loca t ion  of the spec i -  ; 
: f i e d  roo t s .  It i s  not  convenient to plot these a d d i t i o n a l  roo ts ,  b u t  

t ; i t  i s  o f t en  convenient to have t h e i r  values  ava i l ab le .  
1 1 

Eq.(6) i s  f o m u l a t e d  f o r  a s p e c i f i e d  p a i r  of complex r o o t s ,  For 
j some s t u d i e s  r e a l  r o o t s  a r e  of importance and parameter plane curves 
1 f o r  r e a l  r o o t s  are des i r ab le .  To determine r e a l  root l i n e s ,  subs t i -  ' 
j t u t e  s = --r (r = a s p e c i f i e d  r e a l  roo t )  i n t o  Eqo(l) obta in ing  

i 
i 

Assuming t h a t  the a ' s  a r e  l i n e a r  func t ions  of only 2 parameters, a! and 
I p, (8) may be rearranged: 

k -k r+r2r 2 ,, 0 ., +(-l)N-lk, lrN-l+(-l)NrN = 0 
0 1  - 

i 

f 
1 

i which is  the  equation of a s t r a i g h t  l i n e .  Eq, (9) r equ i r e s  its own 
i simple program, 
, For s p e c i f i c  values  of D and Lr) t he  determinant of the  system 
i matrix (LHS of Eq, (6)) may become zero. I f  t h i s  occurs the  de f in ing  

) cannot eva 

l 



I 

The parameters of i n t e r e s t  he re  a 
w i t h  respec t  t o  a and note  t h a t :  

i3a 
E $a& 
36 = o ;  - = I .  

A f t e r  rearranging the  

2 

2 (0+N-2R1) 

Eq.(12) may be ss lved  €or the 
s e n s i t i v i t i e s  au @ u s i n g  the 

; same procedure as for Eq,(6), Note 
t h a t  the f irst  two columns of Eq, 
(12)  may be obtained from the solu- 

, t i o n  of Eq.(6) m To ob ta in  the 
s e n s i t i v i t i e s  wi th  respect t o  8, 
the  column vec tor  cbi3 is  replaced 

i with  the  column vec tor  [til and the 
' var i ab le  nota t ion  i s  changed from 

-5E and ?E- 

to 8. 

1 0 - 0 0  0 

2 0  1 0 

(r +w 20 0 

0 2 0  

2 2  0 (T +crl 

aN-2 
%-2 

. 

II 

bN-l  

bN-2 .. 
0 . . 
0 

0 
0 

0 

0 

0 

bl 

b 
0 

I 

m 



! .  Proceeding a s  i n  the  
1 obtained 

N - 1  C 

C N-2 

-1 

-20 

2 2  -(a + w )  

0 
* 
0 . 

0 

0 

0 

0 

- 0 .  cll 

0 

1 
0 

. 
. 

1 

* . 
. 
* 

0 

N-1, N + 1  C 

N, N-l-1 C 

I Eq,(14) i s  w r i t t e n  f o r  a spec i f i ed  0, W p a i r ,  and the matrix 
, 

has  (N+2)  columns and N rows, Using a computer program f o r  row oper- 
; a t i o n s  provides a matr ix  equation of t he  form I 

aB 
B 
R1 

N-2 

a 

1 

= o  



i 
Another case  i n  which the  parameters appear nonl inear ly  provides 

a3,; = b  M + c k  + pka@ + qkB 2 + rk@ 2 + % 
k 

Matrix manipulations follow the same scheme a s  f o r  the preceding 
case.  I n  t h i s  case  the  parameter vec tor  (see Eq.(14) and (15) )  wou ld ,  
be 

which conta ins  N-t-4,terms. Con- 
t inu ing  with the  procedures used 
f o r  Eq.(15) resul ts  i n  a biquad- 
r a t i c  equation i n  6c (comparable 
to Eq. (16) ) . The s e n s i t i v i t y  
equation now has  two add i t iona l  
terms on the  RHS. (see Eq. ( 2 0 ) ) .  

P2 

R1 

%-2 

N-2 

. 
N-2 

B 
2 a 

81 

-2a 

6 e I l l u s t r a t i o n  ! 

A program has been developed which c a l c u l a t e s  and p l o t s  the  o! 
vs. /l? curves using the matr ix  techniques. Consider the system of 
Fig.1 for which : 

I 

C B (s+25) - -  
- 4  s + ( 2 0 + A )  s3+(1700+20A) s2+(1700+B) s+25B 

The denominator of E q . ( 2 1 )  i s  the c h a r a c t e r i s t i c  equation. L e t  C I = A  ’ 
and 6 = €3, Then the  c o e f f i c i e n t s  a r e  l i n e a r  i n  Q and p, i .e,  - 1  

a = bko! + c,p + % k 
It i s  r e a d i l y  seen t h a t  

- -  
b = 0 ,  c = 25, d o = O ’  

bL = 0,  c = 1, dl = 1700 

b2 =20,  c = 0,  d2 = 1700 

b3 = I, c = 0 ,  d3 = 20 

0 0 

1 

2 

3 
- .- . .  

, 



1, 

2, 

3 .  

4. 

5 .  

6,  

7. 

8. 

9. 

'10. 

1 

, Using the program provides the  parameter plane curves of F i g - 2 .  
I 
I 
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1 CORRESl'OK DENCE 

~ from a real line into a closcd curve1 in the 

Stability analysis using this synchronous 
cribing fiinction is valid only for the 
cific synchronous inputs considered. 

CONCLUSIONS 
The circle of the circle criterion is deter- 

G i n 4  by worst-mse oiitput distortion com- 
ponents and must be avoided. On the other 
hand, in describing function analysis, a 
closed region which must be avoided appears 
only in synchronous cases. 

I t  Teems that the conservative stability 
estiniafes of the circle criterion in the case 
of a general time-varying operator N= N(x ,  
1) are perhaps due to the possibility of syn- 
chronism connected with periodicities in N. 
Consideration of synchronous effects may 
lead to  better stability conditions. I t  appears 
that intersection of the linear part H ( j w )  
with the stability circle may he permitted if 
synchronism cannot occur. 

Z. BONENN 
Scientific Dept. 

hlinistry of Defense 
Israel 
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8 Incidentally. this closed curve is a circle in linear 
cass (e.& when h' is purely time varying). but takes 

, a more complex form for nonlinear dements [3]. 

/ On a Class of Time-Varying Systems 
Abstract-A class of time-varying sys- 

tems whose matrices satisfy a certain ma- 
trix Riccati equation is discussed. For this 
class, the state transition matrix can be 
found in closed form. 

INTRODUC~ION 
Cohsider the homogeneous linear time- 

varying system 

8 - A(l)X(t)  X(0) = xo (1) 

where X is a n  n vector and A(!) is a n  nXn 
matrix that is nonsingular and whose ele- 
ments are continuous and continuously dif- 
ferentiable functions of time. Closed-form 
solutions of (1) are discussed here for the 
class of A(;) that satisfies the following 
matrix Riccati equation: 

d(t) + AV) - B(OA0) (2) 

Manuscript received May 8, 1968. This rescarch 
waa supprted by Ohio State University, College of 
Eagin-g. under Grant EE 10. 

. .  

where B(I) bclongs to certain classes of 
matrices to bc discusscd below. If (2) is 
satisfied, it  can be shown that 

x = B(l)x;. (3) 
For simplicity, the discussion that follows 

is limited to matrices B(t) with real eigen- 
values and one-dimensional invariant sub- 
spaces (distinct eigenvalues). The same ap- 
proach can he extended to multiple eigen- 
value GTWS and complex eigenvalues. 

CLOSED-FORM SOLUTION 
4' 

1) Matrix B is constant. If B isconstant, 
f is a n  exponential function of B and 

= [I + B-l(eB* - I ) A  (O)]X(O). (4) 

AS a n  extension of this case, suppose B(1) 
is a function of time that satisfies the follow- 
ing Riccati equation: 

B(t) + Bqr) = CB(t) (5) 
where C is a constant matrix; then the 601~- 
tion of (1) is given by 

X(t)  = [tA (0) + C- ' (PP - IZ) A (0) 
. f A*(O).+ IlX(0). (6) 

if C in itwlf is n function of time, brit it  I 

mtklim n dilTeront eqci:i~ion of type (S), 
aKiiiii wliitioii of ( I )  exists in clovcd form. 
This procedure holds for a sequence of such 
Riccati equations of any length. 

2) Matrix B(t) has constant eigenvec- 
tors. The matrix B(1) in this case is decom- 
posable as 

B(t) = Mr(t)M-1 (7) 
where M is a constant nXn matrix whose 
columns are the eigenvectors of B(t)  and r(t) 
is a diagonal matrix with elements TI( ( ) ,  - * * 
m(t). One can show that 

-dtiH-'A(O) + I X(0).  1 
The extension of the former case, namely, 
for a sequence of Riccati equations, in gen- 
eral applies here, except that the integration 
of the scalar exponentials appearing in (9) 
may not be very easy. 
Note that condition (7) is equivalent to 

B(ISB(tS = B(lz)B(13 
for all t. 

3) Matrix B(t)  has constant eigen- 
values. The discussion here will be limited to 
matrices B(t) of the form 

B(1) =. eD#re-D' (10) 
where D is D constant matrix, and I' is dia- 
gonal with a n s t a n t  elements. For this case. 

B(t) 5 dDIG(r-D)Ct(O) (11) 
X(r) - [(sD'Ps'-)'-P)A(O) +Z]X(O) (12) 

where P i4  a constant matrix equal to 

Again the extension to a sequence i s  valid, 
namely, solution of (1) can be found in 
closed form if B(1) does not satisfy (lo), but 
it. satisfies a matrix Rircati equation such as 
(5) where C satisfies a n  equation of form 
(10) and so forth. 

CONUUSXON 
To two known classes of matrices A ( t )  

that render closed-form solutions for time- 
varying systems (matrices with constant 
eigenvectors or constant eigenvalues), a third 
class is added here-matrices that satisfy a 
certain Riccati equation. 

The discussion concerning constant 
eigenvalue matrices was limited to a very 
special class (10). More research is necessary 
for extension cf the present results to more 
general constant eigenvalue systems. 

More research is desirable in analysis of 
structure of time-varying matrices with 
closed-form solutions in order to unify the 
present scattered results in this area. 

H. HEMAXI 
Dept. of Elec Engrg. 
Ohio State University 

Columbus, Ohio 

Squared-Error Minimization with 
Stability Constraints 

Absiracf-Mhhization of the mean- 
squared error in linear closed-loop control 
systems may result in a poorly damped sys- 
tem response to deterministic inputs. To im- 
prove the results, it is suggested to minimize 
the same performance index with a relative 
stability constraint so that all the character- 
istic roots have the relative damping coeffi- 
cient greater or at least equal to a pre- 
scribed value. 

It i5 a well-known fact 11) that a mini- 
mization of the mean-squared error in linear 
closed-loop control systems may result in a 
poorly damped system response to deter- 
ministic inputs. To improve this situation, i t  
is suggested that the same performance in- 
dex be minimized with a relative stability 
constraint so that ail the roots of the cor- 
responding characteristic equation have the 
relative damping coefficient greater or at 
least equal to a prescribed value. The idea 
of constrained minimization is now illus- 
trated in the parameter plane 121, [3]. 

Consider a control system, shown in the 
upper right corner of Fig. 1, with the sped- 
fications 

. 

Manuscript received April 17,1968.Thisaorkwar 
CuppOrrai by NASA Grant NGR 05-017-014 
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Fig. 1. Squared-error minimization in the parameter plane. 

1 
s(O.M)lss + 0.025s + 0.25) 

u(f) = unit step function; 
+ds)  = YNh. 

I t  is required to determine the param- 
eters K .  A, and 6 of the integral compensator 
GJs) so as to  increase the system velocity 
constant and minimize the mean-squared 
error while maintaining the overshoot of the 
unit-step function response below 30 percent 
of its steady-state value. At first, the noise 
component is not considered. 

one can plot the r=constant curves on the 
parameter O L ~  plane in the usual fashion [2], 
[3] as shown in Fig. 1. These curves deter- 
mine in the CY@ plane the relative damping 
regions R { f > r ~ )  which correspond to a 
given value of the relative damping coeffi- 
cient to. Thus, for f0=0.4, the relative 
damping region R ( f 2 0 . 4 )  is determined by 
curve f=0.4 and is shown shaded on Fig. 1. 
For the valses of a and A which lie inside 
R {r20.4), all the characterstic roots have 
120.4. 

By using the substitution (3) and apply- 
ing the well-known procedure [i], we can 
evaluate the mean-squared error I from (2) 
as function of a and 8:  

(4) 
0.02582 - 0.375018 - 1.558 + lO-'a - 0.65.10-' 

0.6258' + cr28 - 6.250~8 I(al SI = 

As known, the choice of the parameter 
&(<<I) is not critical and the value 0.04 may 
be accepted. Then, if the numerical value of 
78 is 2=, the power density of error +E@)  
which correspcnds to the signal s(!) given as 

For different values of I, a family of the 
curves determined by (4) is plotted on Fig. 
1. The minimum of 1 is found a t  the point 
Ma which lies outside the damping region 
R 020.4) and thus is unsatisfactory. The 

(2) 
0.002s' 0.05~~ + 0.5s + 0.02 

'a'5) = O.Wl5' + 0.025s' + 0.25.9 + ( K  + 0.01)s + 0.04KA ' 

t The denominator of.+&) i s  the char- 
acteristic polynomial of the system under 
investigation. By substituting in the char- 
acteristic polynomial 

K + 0.01 = a 

solution of the formulated control problem 
is at the point MI which corresponds to the 
constrained minimum of I on R. In addition, 
the diagram of Fig. 1 mil be used to deter- 
mine readily the characteristic roots related 
to Mi [2], [3]. From the curve p0.4 and 
tangeiitu to curve I== 1, the roots are 

(3) 0.04KX = 8, 

~ 1 . 2  = - 4.1 f j9.39, sa = - 0.864, 
(5) 

~4 = - 16.4. 

The smally real root and the zero of the cor- 
responding closed-loop transfer function 
form a dipole whose effect may be neglected. 
The other real root is relatively large and 
its effect can be also neglected. The unit-step 
function response will be governed only by 
the pair of complex roots 51.2 whose value 
of damping coefficient 0;=0.4) ensures that 
the overshooc is less than 30 percent. 

From the coordinates of the point 
MI(OL= 1.89; 8 = 1.52) and substitution (3). 
the values of the compensator parameters 
are K =  1.58 and X=20.2. The velocity 
constant of the Compensated system is 38 
times greater than that of the uncompen- 
sated system. The constrained minimum at 
M I  is I=0.307. The unconstrained mini- 
mum at M0 is 1=0.187 and corresponds to r = 0.198. 

In a similar manner, the component of 
the mean-squared error related to the noise 
can also be expressed as a function of Q and 
6 which for y.v=2n has the folloning form: 

The same reasoning outlined above may now 
be applied to the noise case. 

D. D. SXLJAK 
University of Smta Clan. 

Santa Clara, Calif. 
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ANALYSIS AND DESIGN O F  OSCILLATORS 

WITH PARAMETER PLANE METHODS 

G. V. Zorbas G. 3. Thaler 

INTRODUCTION 

The a b i l i t y  of a c i r c u i t  t o  o s c i l l a t e  depends on the 
r 

values of its parameters, and the threshold of o sc i l l a t ion  

can be established f o r  most c i r c u i t s  by l i nea r  analysis.  

The d i f f e r e n t i a l  equations of the o s c i l l a t o r  c i r c u i t  a r e  

studied f o r  s m a l l  s igna l  ,operation, which provides l i n e a r  

d i f f e r e n t i a l  equations and thus a charac te r i s t ic  polynomial 

fo r  the o s c i l l a t o r .  The l i m i t  of s t a b i l i t y  fo r  the charac- 

terist ic polynomial i s  a l so  the threshold of o s c i l l a t i o n  

f o r  the o s c i l l a t o r ,  Use of parameter plane methods permits 

study of the e f f e c t s  of parameter values on t h i s  s t a b i l i t y  

l i m i t  and on the frequency of o sc i l l a t ion ,  These methods 

a l so  give ins ight  i n t o  the l i m i t s  of adjustment of a given 

circuit?, the e f f e c t  of parameter values an the amplitude of 
/ 

osc i l l a t ion ,  the e f f e c t s  of parameter variations on c i r c u i t  

performance ( sens i t i v i ty )  , and the e f fec ts  of parameter 

tolerance on operating conditions, 



CHARACTERISTIC POLYNOMIAL OF A PHTiSE SHIFT OSCILLATOR 

Fig. l ( a )  shows a schematic diagram f o r  a phase s h i f t  

o sc i l l a to r .  Subst i tut ing the equivalent c i r c u i t  fo r  the 

t r ans i s to r  provides Fig. l (b)  and applying Thevenin's theo- 

r e m  provides Fig, l ( c ) .  W e  choose t o  consider C and Rv 
V 

as parameters (adjustable variables) , a l l  other elements 

have fixed numerical values, The loop equations a r e  
* 

I1(R1 + R f jX) - 1 2 R  = E 

- I IR + 1 2 ( 2 R  + jX) - 13R = 0 

- I Z R  + Ig(R + Rv 4 jXv) = 0 

By appropriate manipulation the charac te r i s t ic  polynomial 

is obtained and is: 

C2[CVRv(AR 2 + R 2 f 2RR1) 4 CvR2R1] S3 + 

[RvCv(3RC + RIC) + (2R2C + RRIC) -E (R 2 2  C + 2RR1C2)]S2 

e [R v v  C + C V R + 3RC + RIC] s + 1 =. 0 (4 1 

ANALYSIS OF THE OSCILLATOR 

To f ind the s t a b i l i t y  l i m i t  f o r  t h i s  polynomial w e  must  

f ind  all Rv, C 

ginary roots,  i.e., two bf the three roots on the imaginary 

axis df the s-plane, . Since t h i s  polynomial i s  only of 

third.  order, several  techniques a r e  available for  finding 

the 'desired relat ionship.  The c-urves i n  t h i s  paper were 

p a i r s  which provide a pair of conjugate ima- 
V 

, .  

1 

2 



2-12. T r a n s i s t o r  phase shif? o s c i l l a t o r .  
- -  

The saae problem can be handled with t r a n s i s t o r s  i n s t ead  of tubes ,  

with minor d i f f e r e n c e s  . 

L 

Trans i s t o r  phasa s h i f t  o x  i l l a t o  r 

Figure  2-43 ~- 

'The equiva len t  c i r c u i t  o f  F igu re  2-43 is: - .  
. .  

Using 

. T r a n s i s t o r  phase s h i f t '  equivalei i t  .cCrcuit  
- -  

/ 
Figure  2-44 

Thevenin equiva len t  t o  the l e f t  of po in ts  x-x we get: 
R1 C C cv 

T r a n s i s t o r  phase shift equiva len t  c i r c u i t  

F igu re  2-45 

Ro*= output  r e s i s t a n c e  

P 

RL = load r e s i s t a n c e  



obtained using the parameter plane method (1-5) which is  

summarized i n  Appendix I, 
A A L e t  Cv = 01 and Rv = 4 8  then the applicable equa 

are those i n  the appendix for  the cas 

b CY + ckfl + $d % % A 

% =  k 

Thus w e  can map the imaginary axis of the s-plane onto the 

tX-P parameter plane through equations A.8, A computer pro- 

gram (6) is  available for  t h i s  and the r e s u l t s  a re  shown on 

Fig, 2 for  three d i f fe ren t  values of amplifier gain, A. 

Constant Ocontours have been added. 

Interpretation of these curves i s  as  follows: each 

4 = 0 curve divides the parameter plane into two areas, for  

< 0 and > 0 (corresponding to the right half of the 

s-plane and the l e f t  half .of the s-plaxe) . Stabi l i ty  cri-  

t e r i a  defining these areas are  i n  the l i t e ra ture  (2,  3 ,  5) 

and are  not repeated here, Choice of a point on the para- 
r 

meter plane (as an operating point) defines values for  cV 

and R as  the coordinates of th i s  point. I f  the chosen 

point l i es  on the 4 = 0 curve, then the circuit is j u s t  a t  

the s t a b i l i t y  l i m i t ,  i.e.8 the c i r c u i t  is  j u s t  able to 

osc i l la te .  I f  the chosen point l i es  i n  the > 0 area the 

c i r c u i t  cannot osc i l la te ,  whereas i f  the chosen point i s  i n  

the .<  < 0 area the c i r c u i t  osc i l la tes  with growing amplitude 

u n t i l  th& amplifier saturates and reduces its equivalbnt 

V 

. .  

i n  to  an equilibrium value, For example, i f  the chosen 
6 g point (on Fig, 2) is a t  Rv = 2.7 x 10 

5 x lo-’, then th i s  point lies on the A = 30 curve 

and 

3 





a t  u =  261.6. Assume, however, t h a t  t h e  a c t u a l  amplifier 

. ga in  i s  A = 40; then t h e  chosen p o i n t  i s  i n  t h e  < 0 area, 

the c i r c u i t  w i l l  osci l la te  a t  W =  261.6, and the osc i l l a - '  

t i o n s  w i l l  i n c r e a s e  i n  amplitude, s a t u r a t i n g  the amplifier 

and reducing t h e  equ iva len t  ga in  f r o m  A = 40 to A = 30. 

The curves  of Fig. 2 a lso i n d i c a t e  that  for a cons ider -  

able range of va lues  f o r  Rv and Cv the c i r c u i t  w i l l  n o t  
s 

oscillate. I f  

va lue  of cV i s  

Rv is  about  35 

Note that  

A = 408 for  example, t h e  maximum useable  

about  2.65 x 15 , and the minimum va lue  for 

x 10 . 
t h e  curves  of Fig,  2 a c t u a l l y  involve  f o u r  

9 

6 

parameters - the coord ina te s  R and Cv, the running para-  

m e t e r ,  a# and the curve  index, A ,  I n  us ing  the parameter 

p l a n e  equat ions  i t  i s  necessary t h a t  u b e  r e t a i n e d  as the 

sunning parameter,  b u t  any two of par imeters  R 

be used as coord ina te s  (by,p) wi th  t h e  th i rd  as index. 

Furthermore, the data can be c r o s s p l o t t e d  thus  ob ta in ing  cr: 

as one of t h e  coord ina te s  i f  th is  i s  advantageous. 

V 

c v 8  A may 

< 

SENSITIVITY CONSIDERATIONS (7, 8, 9) 

I n  the design of an o s c i l l a t o r  one i s  concerned w i t h  

. the s e n s i t i v i t y  of the  c i r c u i t  to adjustment,  and to toler-  

ances.  I f ,  for  example, 

oscil lator o p e r a t e s  w i t h  

freguendy of o s c i l l a t i o n  

b u t  w i l l  be s e n s i t i v e  to 

R and A are close so that  the cv, v 
the amplifier sa tu ra t ed ,  then t h e  

is n o t  s e n s i t i v e  to g a i n  v a r i a t i o n s ,  

v a r i a t i o n s  i n  C and Rv. V 

The incremental  change i n  @ 

change i n  either Cv o r  Rv can  be 
1 

4 

due to an incremental  

determined by i n s p e c t i o n  



of Fig. 2. Thus tolerance l i m i t s  can be established for  

C and R i n  terms of permissible frequency deviation, 

Conversely, i f  desirable tolerances are known for  C and 
V V 

V 

Rv inspection of Fig. 2 permits choice of an operating 

point which provides the desired frequency of osc i l la t ion  

with m i n i m u m  frequency sens i t iv i ty  for  the specified toler-  

ances on Cv and Rv. 
t 

On the other hand, i f  i t  is  desired to operate with 

minimal amplifier saturation then sens i t iv i ty  considerations 

a re  much more important. By inspection of Fig. 2 operation 

a t  tr: = 417 provides a system which is  very sensi t ive to 

changes i n  A and i n  Rv, 

i n  e i ther  of these parameters may move the operating point 

i n  the sense that  s l i gh t  changes 

across the = 0 l i ne  with the r e s u l t  t h a t  the system would 

not be able to osc i l la te .  i t  may also be seen tha t  opera- 

tion a t  w 214 provides an osc i l la tor  with m i n i m u m  sensi- 

t i v i t y  to  a l l  three parameters. For required operation a t  

W =  417 an obvious conclusion i s  t h a t  the designer should 

a l t e r  some of the other R or  C values i n  the phase s h i f t  

c i r cu i t  to  provide improved sens i t iv i ty  conditions a t  W =417. 

I n  many cases the designer may be concerned with the 

sens i t iv i ty  of the c i r c u i t  to parameters which are not con- 

sidered controllable or  design parameters. 

parameters of the active element such as  R1 may be subject 

t o  substantial  variations,  

established i n  the usual way, b u t  i t  is  more invormative and 

more use fu l  to simply obtain another s e t  of parameter plane 

For example the 

ens i t iv i ty  relationship may be 

- 

5 



curves with the quantity of i n t e r e s t  as a new parameter; 

s e n s i t i v i t y  with respect t o  the new parameter i s  then direct-  

l y  observable. Fig. 3 shows such a set  of curves fo r  para- 

meters R and Cv; constant W l i n e s  have been added and the 

s e n s i t i v i t y  of the o s c i l l a t i n g  frequency t o  var ia t ions i n  

R1 is readi ly  observable. 

1 , 
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OTHER EXAMPLES 

This technique can be applied t o  many osc i l la tor  cir- 

c u i t s .  Fig. 4a shows the w e l l  known Colpitts c i r c u i t  for  

which the character is t ic  equation is 

C C L  XC c 
S - + s2 (cp 4- "+ s (C1r + C1+ "" )+ (A+1) =o 

YO YO YO 

where yo = (rp + %)/rp%. Fig. 4b presents a parameter 

plane p lo t  showing s t a b i l i t y  l i m i t s  with C and L as para- 

meters; 

parameters. 

1 .  
Fig. 4c presents a similar p lo t  with C2 and L a s  

I n  l ike  manner Fig. 5a shows the tuned p la te  osc i l la -  

tor  c i r cu i t ,  for  which the character is t ic  equation i s  

s2 + s (m + L + e)+ (r + -L) .= 0 
YO yo . YO 

where y 

plane relationships. 

= (rp + %)/rps.  Fig. 5b shows the parameter 
0 

,. 

A very interest ing case is  the Hartley c i rcu i t ,  shown 

i n  Fig. 6a, for which the character is t ic  equation is 

3 2 2 
S (ACL1L2 - ACM + CL1L2 - CM ) + 

CL1 + CLz + 2CM 
s2(ACLlr2 + ACL2rl + CLlr2 + CL2Rl + 

s.(ACilr2 - AM + Crlr2 '  C L2 + 

. ' yo 
C r l  f C r 2 -  

YO 

where y = (rp + %)/rPI$,. Fig.- 6b shows typical parameter 
- 0  

/ 
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plane  curves f o r  parametersc and L1. For parameters C and 

however, t h e  = 0 curve has  two branches as shown on L2 8 

Fig. 7. Between these branches i s  an area marked "Dead 

Zone". T h i s  i s  a misnomer, of  course,  because the curves 

are a c t u a l l y  continuous ac ross  this zone. I t  may be observ- 

ed from the f i g u r e  that  Ehe "Dead Zone" occurs between the 

l o w  frequency terminat ions of the t w o  branches of  each 

- 

* 

curve.  This i s  simply an ind ica t ion  t h a t  t he re  i s  a mini- 

mum frequency below which the  c i r c u i t  w i l l  not o s c i l l a t e .  

The frequency a t  t he  curve terminat ion is  j u s t  s l i g h t l y  

above t h i s  minimum frequency, and the computer program 

L 

(which increments OJ and computes values  f o r  C and L2) 

chooses too l o w  a va lue  for c3 and computes complex va lues  

for  C and L2. 

VERIFICATION O F  THEORY 

A l l  c i r c u i t s  discussed w e r e  simulated using the  CDC1604 
< -  

computer or a DONNER ANALOG COMPUTER. The t h e o r e t i c a l  pre- 

d i c t i o n s  w e r e  v e r i f i e d  i n  a l l  cases, including s t u d i e s  of 

the "dead zone" phenomenon f o r  the Hart ley c i r c u i t .  

8 



4. C o l p i t t ' s  O s c i l l a t o r  

4-1. Der iva t ion  of c h a r a c t e r i s t  ic equation. 
L ,  

I . * -  ~ -. . . . 

1- 
L r 

B+ 

I s o l a t i n g  
Capaci tor  

F igure  4-1. C o l p i t t ' s  o s c i l l a t o r  
J 

C h a r a c t e r i s t i c  equat ion  : 

YfZf + yozi + 1 = 0 

*- 

Plug Znto t h e  c h a r a c t e r i s t i c  equation: 



t 



. .  

, . !  . 
. !. - . . . .  

L 

. .  ; 
. .  . 
i 

I 

m 'a. crc 

. .  
,. . 

_ .  
. . : 
. .: 

It I f  

3 

c 
0 
0 

O k  I 
I 
f 

h 



7 .  Tube Tuned Plate Oscil la tor  

7-1. Derivation of the  character is t ic  equation. 

It has been found 123 that:  

- 1  + - letting S = 3~ 1 0 1 ,  1 
z i = - 7 7 - -  u l c z  - J - - - r  WC S2CLZ sc 

' .  , 

Figure 7-1 .  Tuned p la te  o s c i l l a t o r  

and equivalently: 

. -  

/ 

. Figure 7-2.  Tuned p la te  equivalent c i r c u i t  





5 .  Hartley O s c i l l a t o r .  
. .' 

5-1. Derivat ion of c h a r a c t e r i s t i c  equation. 

.: , . . .  . .  . .  

r .- 
Figure  5-1. Har t l ey  O s c i l l a t o r  

C h a r a c t e r i s t i c  equation: 

R 
-\. L 

B* 

'y f f  2 + yozi .i: 1 = 0 Yf = gm 

. - _  .. . i. - .. .. . 

- .  
. .  . .  . .  

Z = r1. + r2 + SLl + SL2 + 2SM + - 1 
I . sc 

. . .  . .  

. .  
Plug i n t o  t h e  c h a r a c t e r i s t i c  equation: 



m 
' 0  c: 

E 

;t 
2 
If 

, . . , . . , ,, . . . . , 
. , . . I , . *  . . . . .  I . .  . . < .  

1 1 . 1  I 
I '  ' !+: ' i : ! I .  I -I! I-I--l n m  
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CONCLUSIONS : 

The choice of parameter values for  design or osc i l la -  

tors  i s  expedited by the use of the parameter plane. 

Ranges of values of the parameters sui table  for  operation 

a t  a given frequency are  eas i ly  obtained. 

of the osc i l la t ing  frequency t o  parameter variations is  

._ 

The sens i t iv i ty  

available from the plots .  As a r e s u l t  optimization of the 

design is  simplified. 

9 
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= Un (cos ke + j s i n  k8) k k jke Then s = on e 

where T ( c )  and G . ( c )  are chebyshex- functions and a r e  
4 

. k  

Inser t ing  A.2 in A.1 and requiring mat the r e a l s  and 





a - =  B2Hl - B1H2 C ClD2 - C2Dl 

b = C2H1 - C1H2 d = BlD2 - B2D1 
c 

e = C 2 B i  - B2Cl + H1D2 - H2Dl f = C2B1- B2C1+ H1D2- H2D1 



DESIGN O F  PHASE LOCKED LOOPS ON THE PAI;tA 

J. S ,  Karmarkar** 

ABSTRACT: Phase locked loops a r e  considered from a "nonl inear  
sys  terns" viewpoint, u t i l i z i n g  parameter p l ane  and desc r ib ing  
func t ion  techniques.  P e r t i n e n t  s p e c i f i c a t i o n  curves toge ther .  
with the  region of  s t a b i l i t y  a r e  d isp layed  i n  the  p lane  of t he  
parameters.  Procedures a r e  presented  f o r  p r e d i c t i n g  t r a n s i e n t  
response i n  the  absence of no ise ,  f o r  e s t ima t ing  s t a t i s t i c a l  
parameters i n  the  presence of noise ,  f o r  p r e d i c t i n g  l i m i t  
c y c l e s s  and f o r  s tudying r o o t  s e n s i t i v i t y  t o  parameter varia-.  
t i o n ,  The design problem is ,  i n  the  mainp reduced t o  one of 
i n spec t ion  of  the  p e r t i n e n t  parameter p lane  curves 

Second and t h i r d  o rde r  systems a r e  analyzed t o  i l l u s t r a t e  
the  technique, although t h e  proced.u.re i s  d i r e c t l y  app l i cab le  t o  
systems of h igher  order ,  

rch r epor t ed  h e r e i n  w supported by NASA 

** A s s i s t a n t ,  Department of  E l e c t r i c a l  Engineering, Univers i ty  
of Santa Clara ,  Santa Clara ,  C a l i f o r n i a  

er 



INTRODUCTION: Phase locke 
communication sys  t e m s ,  may 
of F i g - l a .  For t h i s  r e p r e s e n t a t i o  
s i g n a l  a r e  

6* 

I N  

OUTPUT SIGNAL = 

The m u l t i p l i c a t i o n  of 
a summation and a nonl inear  element as shown i n  F ig , lb ,  and the  
s i g n a l s  s u b t r a c t e d  a t  t h e  summer are the  phases  of the  i n p u t  and 

I n  F i g - l b :  

e ( t )  - w t 

e l ( t )  - m o t  

e,(t) - e , ( t )  

0- 

qu iescen t  o s c i l l a t o r  frequency., 

no ise ,  i f  any i s  t o  be considered.  

and 0 '  ( t )  a r e  def ined  i n  Eq. (1) a 

I f  a desc r ib ing  func t ion  can be der ived  f o r  the nonl inear  
block of F ig , lb ,  and i f  t r a n s f e r  func t ions  a r e  known f o r  t he  
l i n e a r  p a r t s  of the loop, then a n a l y s i s  and design on the  para-  
m e t e r  p lane  may be accomplished. 

DERIVATION O F  DESCRIBING FUNCTION 

The nonl inear  block ope ra t e s  on j-ts i n p u t  s i g n a l  and produces 
an output  which i s  A t i m e s  t he  s i n  of t he  inpu t  s i g n a l ,  

The i n p u t  s n a l  i s  @(t )  = q5 s i n  W t  

Then the ou nCQmsin ut3 

) s i n  (2114-1) u t  
n=O 

S 

-2- 



Trunmting* the  series the r a t i o  of output over  i n p u t  is  
the desc r ib ing  func t ion  

2 A  Jl($m)sin w t  2 A  Jl (@m) - - 
@msin ut %l 

N =  

Table 1 g ives  the va lues  of $m, J l (@m)  and N 

* W e  no te  t h a t  2J1(Ibm) = ,881; 2J3(eSm) = .06; 2J ( 4  ) =.0005 5 m  - -  

so w e  may reasonably n e g l e c t  J3 and J5" 

-3- 



TABLE X (8) 

DESCRIBING FUNCTION O F  THE NONLINEAR BLOCK 

J ( @  1 N 'm , 1 m  
0 0 1.0 

-1 - 0 5  1.0 

.2 -0995 .995 

- 3  .148 -987 

.4 

.5 

.6 

.7 

.8 

.9 

1.0 

1.1 

1.2  

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

.196 

-242 

287 

.329 

.369 

,406 

,440 

.471 

,498 

.522 

542 

.558 

-570 

.577 

.'581 

.) 581  

.576 

.98 

-968 

.957 

.940 

,922 

.902 

.88 

,855 

,832 

.804 

,775 

0 745 

-714 

.68 

.636 

.612 

-576 

-4- 



FORMULATIOH 0 

sys terns metho 
functions to 

phase locked 

k=O 

where a = bk" + ck@ + % k 

ck, % are  constants bk ' 

ctl, 6 are  parameters 

Using  the root-coefficient relationships 

N-1 a 

a N-2 

a N-3 

al 

0 a 

N-1 C 

N-2 C 

0 C 

N 
R1 

R2 
N 

"%I- 

-5- 



p a i r  by (cr,k$ and rear range  t h e  r i g h t  hand s ide  o 
5- 

.. - 
1 N-2 

Rl d N - l  
- - 

0 

0 

-1 

-20 

N-2 N-2 
R2 Rl 

R, R2 
N-2 N-2 

N-2 bN-2 C dN-2 

N-2 
J 

a 

B 

R1 
N-2 

(9 )  

do - 0 C 
.... 

which manipulates t o  

I 

C -1 0 ..e 

C -2D -1 ... 
b N - l  N-1  

bN-2 N-2 N- ( U 2 + d )  -d 

2 - (a  +m) -20  -dN-3 

0 - ( D 2 + J )  
- 

N-2 
%-2 0 0 C 

I 

For chosen values  of LT and w E q .  (9)  may be processed by s tandard  

computer subrout ines  to eva lua te  o! and @ (and also N-2 R1, etc. i f  

des i r ed )  + Thus cons t an t  D-lines may be chosen on the  s-plane and 

mapped. onto the  61 - parameter p lane ,  as may c o n s t a n t  cat l i n e s .  

A b a s i c  u se  of t h i s  mapping i s  t h a t  one may l o c a t e  a d e s i r e d  p o i n t  

(D,, LO1) on the  01 - plane ,  and the  coord ina tes  of t he  p o i n t  spe- 

c i f y  t h e  values  of 61 and which must be used i f  t he  c h a r a c t e r i s t i c  

equat ion i s  t o  have r o o t s  w i th  t h e  desired al and U1. 

Using the  t ransformations 

0 = PUn 

w = unfi2- 

W e  can also o b t a i n  cons t an t  [ and un l i n e s  i f  needed, and mat r ix  
equat ions f o r  eva lua t ing  r o o t  s e n s i t i v i t i e s  a r e  a l so  a v a i l a b l e ,  

-6- 
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rl 

+ 
3 
JJ 
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N 

0 
a 
-I- 
a-1 
3 

0 
JJ 

k 
JJ 
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u1 

JJ 
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PHASE LOCKED LOOP AJXALYSIS 
r 

Fig, 2 gives a modified form of t h e  block diagram of  Fig,  lb ,  

The c h a r a c t e r i s t i c  polynomial i s  r e a d i l y  obta ined  when F ( s )  i s  
s p e c i f i e d .  For exarnple l e t  F ( s )  = (s+a)/(s+a)  and l e t  N' = B. 
Then the c h a r a c t e r i s t i c  equat ion of t h e  loop i s  

The r e a l - r o o t  l i n e  ( 3 )  f o r  s = 0 i s  -. 0 and the  parameter p lane  
curves a r e  c a l c u l a t e d  us ing  E q . ( 9 )  and appear on Fig.3, By 

i n spec t ion  a p a i r  of complex r o o t s  can be chosen ( t o  s a t i s f y  loop 

c r i t e r i a  f o r  s t a b i l i t y  and d3mping) from which Ix and fi  a r e  determined, 
S e l e c t i o n  of t he  ope ra t ing  p o i n t  on Fig,  3 r e q u i r e s  considera-  

t i o n  of a l l  of the  performance s p e c i f i c a t i o n s .  Many of these  can 
be described by a l g e b r a i c  func t ions  of Qc and 8, and thus can be 

p l o t t e d  on Fig,  2 t o  a c t  a s  guides i n  t he  design. These r e l a t i o n -  
s h i p s  a r e  n o t  der ived  h e r e  because they are w e l l  known ( R e f . 1  and 7 )  

b u t  the r e s u l t s  a r e  t abu la t ed  i n  Table I T  us ing  the n o t a t i o n  of 
Fig.  2. Curves f o r  each o f  these  performance r e l a t i o n s h i p s  have 
been added t o  F igo  3. I t  i s  emphasized t h a t  these  r e l a t i o n s  a r e  
der ived  f o r  t he  l i n e a r  model, 

I n  a d d i t i o n  t o  these  f a c t o r s  t he  nonl inear  n a t u r e  of t h e  loop 
must be considered,  For the  system of  Fig.3 a numerical va lue  for  

"a"  must be chosen be fo re  a n a l y s i s  can proceed. For this  paper 
a = 5.0 was chosen. ( I f  r e s u l t s  are no t  acceptab le  a n a l y s i s  can 
be repeated wi th  another  va lue  of "a".) Since the o r d i n a t e  of 

the  p l o t  on Fig,  3 is f i  = N ' ,  t he  value of 6 v a r i e s  w i th  the  
s i g n a l  i n t o  the nonl inear  element, b u t  t h e  va lue  of CX does n o t  
change: t h e r e f o r e  t h e  motion of t h e  r o o t s  due to  the n o n l i n e a r i t y  
can be descr ibed  on t h e  parameter p lane  by  the  l i n e  N! A s c a l e  
may be added t o  t h i s  l i n e  us ing  Eq,  ( 5 ) ,  and t h i s  s c a l e  may be 

ad jus t ed  by a l t e r i n g  AI(, 

Choosing a = 2.5, t h e  nonl inear  ope ra t ing  l i n e  has  been drawn 
on Fig. 38  and Fig. 3 B  f o r  A = 1 and K = 1. From Table I,  N' = 1 

(see Fig ,  3A) and K = 10 '(see Fig,  3B). For any selected a ,  A and 
K a n a l y s i s  c o n s i s t s  o f  reading the  r o o t  va lues  and o t h e r  performance 

-. when @ = 1.5,  The other l i n e s  may be s i m i l a r l y  s c a l e d  f o r  K = 2 

* 
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c h a r a c t e r i s t i c s  f r o m  the  parameter p lane ,  A b a s i c  design method i s  
t o  t r y  va r ious  combinations of a,  A and- K u n t i l  an acceptab le  set  

of performance c h a r a c t e r i s t i c s  i s  obtained.  

P 

PERFORMANCE OPTIMIZATION 

When no i se  i s  p r e s e n t  system performance d e t e r i o r a t e s  and i t  
i s  d e s i r e d  t o  choose an ope ra t ing  p o i n t  which i n  some way optimizes 
the  performance, I n  s t eady  s ta te  the  phase e r r o r  var iance  due to 
noise  i s  given by 

( f o r  a l i n e a r  model) 2 
(T = -  

VIN A2 

Since the phase e r r o r  due t o  no i se  i s  independent of  t h a t  due t o  

modulation, thus 

CY2 = Cr2 +MSE VI ON 

b u t  t he  phase e r r o r  due t o  noise  i s  p ropor t iona l  t o  the  loop 
bandwidth 

I t  i s  convenient t o  choose a performance c r i t e r i o n ,  Q, such t h a t  

Q = BL -I- X(MSE) 

w h e r e  X i s  a weighting f a c t o r .  Then the  performance i s  s a i d  t o  
be optimized when Q is a minimum. 

Exaxination of Fig,  3 A  shows t h a t  f o r  K = 2, MSE i s  less than 
0.3, while  f o r  K = 1, MSE i s  less than 0.5. On the o t h e r  hand, 
f o r  K = 2 ,  BL ^= 0.75 whi le  f o r  K = 1, BL i s  less than 0-5 .  
€or  d i f f e r e n t  va lues  of the weighting f a c t o r ,  X, d i f f e r e n t  
ope ra t ing  p o i n t s  are r equ i r ed  t o  minimize t h e  performance c r i t e r i o n .  
Furthermore, the t r a n s i e n t  c h a r a c t e r i s t i c s  of the sys  t e m  may be 

est imated;  f o r  K = 2 t he  r o o t s  range from r = 0.73 to  1 = 0.71, 

Thus 

-9- 



whi le  for*I (  = 1 they range f r o m  = 0 - 8 5  t o  2: = 0 - 7 9 .  (It  i s  of 
i n t e r e s t  t o  note  the  01 = 2.5  was chosen f o r  t h i s  example because 
the  system i s  underdamped f o r  lower va lues  of CII and overdamped 
f o r  larger values  of 01). S t a b i l i t y  need n o t  be considered 
because t h e  loop is  only o f  second order .  

I t  is n o t  intended t h a t  the-performance c r i t e r i o n ,  Q, be 

used t o  determine an  abso lu t e  optimum ope ra t ing  p o i n t  b u t  r a t h e r  
i t  i s  intended t o  se rve  as a gu ide l ine  f o r  choice of an ope ra t ing  
p o i n t ;  eg , ,  f o r  X = 3 i t  may be shown t h a t  K = 2 i s  s l i g h t l y  
better than K = I, 

For cases where t r a n s i e n t  response i s  important,  i t  should 
be noted that  parameter p l ane  methods can be used t o  c a l c u l a t e  
t he  s t e p  response of the nonl inear  system wi th  good accuracy. 
D e t a i l s  a r e  given i n  Ref., 4. 

A THIRD ORDER SYSTEM 

Consider a th i rd  o rde r  loop f o r  which 

a b  F ( s )  14- + 
S 

CY = b N '  = b@ 

a = 1.0 

Then the  c h a r a c t e r i s t i c  equat ion  i s  

s3  4- ps2 4- ps + a = 0 

The r e a l  r o o t  l i n e  (3)  f o r  s 1 0 i s  O! -- 0. Fig. 4 shows 
the  parameter p lane  f o r  t h i s  system. The performance 
curves f o r  cons t an t  MSE and cons t an t  B are shown s e p a r a t e l y  on 
Fig. 5. The opt imiza t ion  procedure i s  c d r r i e d  o u t  a s  i n  the  case  
of  t he  second o rde r  loop, so d e t a i l s  a r e  no t  presented  here. For 

L .  

t h e  t h i r d  o rde r  loop, however, i t  i s  p o s s i b l e  t h a t  i n s t a b i l i t y  
may occur,  so ope ra t ing  cond i t ions  m u s t  be chosen t o  avoid. t h i s  

p o s s i b i l i t y .  

-10- 



Consider t h e  cond i t ions  i f  the  ope ra t ing  p o i n t  i s  chosen a t  
Q! = j? = 1?25, so t h a t  b = 1.0. I f  the  loop w e r e  l i n e a r  the para- 
m e t e r  p l ane  p r e d i c t s  t h a t  i t  should be s t a b l e ,  When the  non l inea r  
ope ra t ing  l i n e  i s  cons t ruc t ed  i t  i s  seen t h a t  t h i s  l i n e  c r o s s e s  
the  s t a b i l i t y  boundary (cr = 0 cu rve ) ,  so t h a t  f o r  s u f f i c i e n t l y  
l a r g e  i n i t i a l  cond i t ion  the system is  uns t ab le  and w i l l  n o t  lock,  
The va lue  of  Cp f o r  which the  l i m i t  of s t a b i l i t y  i s  achieved i s  
p r e d i c t e d  t o  be Cp = 1.31, which should provide an uns t ab le  l i m i t  
c y c l e  (see R e f ,  5 ) ,  Simulation on the  d i g i t a l  computer provides  
the  r e s u l t s  of F igp  6 a , b p c ,  which v e r i f y  the  ex i s t ence  of the  
uns t ab le  l i m i t  cyc l e ,  b u t  de f ine  the  required va lue  of Cp as 
@ = 1.545, This  discrepancy between the  p r e d i c t e d  and a c t u a l  
va lues  of (b i s  due t o  the  inaccurac i e s  and approximations inhe ren t  
i n  t h e  desc r ib ing  func t ion  method. Techniques f o r  improving the  
accuracy a r e  a v a i l a b l e  (Ref 5) i f  needed. 

PERFORMANCE SPECIFICATIONS 

Besides the  s p e c i f i c a t i o n s  of MSE and By( used i n  the preced-ing 
examples, numerous o t h e r  c r i t e r i a ,  some empir ica l  and some exac t ,  
are a v a i l a b l e  i n  the  l i t e r a t u r e .  These inc lude  r e l a t i o n s h i p s  f o r  
a c q u i s i t i o n ,  t r ack ing  l i m i t s ,  t r ack ing  e r r o r ,  etc For example 
cons t an t  e r r o r  c o e f f i c i e n t  curves  may be r e a d i l y  superimposed on 
t h e  parameter p l ane  p l o t  (Ref . 7 ) ,  and these  permit d e f i n i t i o n  of 
a hold- in  range (empir ica l ,  see R e f . 2 ,  p,168) : 

AwH % rad/sec. 

CONCLUSION: 

Methods f o r  t he  a n a l y s i s  and design of  phase locked loops 
us ing  t h e  parameter p lane  have been presented ,  This  technique 
permits the  des igner  t o  cons ider  s e v e r a l  design c o n s t r a i n t s  
simultaneously.  S u i t a b l e  system parameters are picked by inspec-  
t i o n .  of the  p e r t i n e n t  curves  so t h a t  "optimvn" performance i s  obtaineld- 

- It  is of  i n t e r e s t  t o  note  t h a t  q u a s i - s t a t i c  e s t ima tes  of 
._ 

s t a t i s t i c a l -  parameters a r e  a l s o  p laced  i n  evidence I n  a d d i t i o n  

s t a b i l i k y  a n a l y s i s  i s  r e a d i l y  performed when needed, a s  f o r  t h i r d  

and h ighe r  o rde r  systems where phase p lane  techniques a r e  n o t  

app l i cab le .  -11 - 
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1 I 
a )  Basic Ftepresentcrfion 

. b ) ' ~  Derived Diag ram 

Fig. 1 .  Block d iagram of Q p h ~ i ~ e  locked loop. 

i 
. N = Descr ib ing funct ion of Non l inear i ty  

F (s)=Transfer func t ion  o f  L i n e a r - F i l t e r  

'F ig .  2.' Mo'dified block diagram of Phase Locked Loop. 
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I Absolute sta ility and parameter sensitivity? 
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This paper extends the notion of absolute stability to  include the parameter variations 
of the linear part of the system. A simple analytic procedure is proposed to calculate 
the regions of absolute stability in the parameter space. Then, a parallelepiped of 
ninsimum volunie is embedded in the region to interpret its boundaries and obtain 
readily the information about parameter variations which do not affect the system 
stability. 

1. Introduction 
Stability and sensitivity are two essential properties of dynamic control 

systems. n'hile stability assures a proper functioning of tlie system, the 
sensitivity indicates tlie ability of tlie system to retain required performaiice 
characteristics despite changes in the operating conditions. These changes may 
occus due to the fact that tlie parameters of physical systems deviate from their 
iiomiiial values either because of inaccuracies in the system components (time- 
invariant case), or because tlie system parameters vary in time (time-varying 
case). Therefore, a simultaneous consideration of stability and parameter 
sensitivity in system analysis is desired. 

The Lur'e (1957) absolute stability concept and the related criterion of Popov 
(1 963) are significant contributions to stability aiialysis of dynamic systems. 
This is mostly because tlie absolute stability concept is meaningful in a large 
class of closed-loop control systems, and the Popov criterion provides a simljle 
procedure to coiiclude that kind of stability. 

In  the absolute stability analysis, tlie lion-linear characteristic is not com- 
pletely specified and it should only belong to a certain defined class of functions. 
On tlie other hand, tlie parameters of the linear part are specified numerically. 
This p p c r  proposcs an absolute stability definition which will relax the coii- 
ditions on tlic linoar part and i~llow systcin lmramctcrs to dcviatc from thcir 
nominal values. Then, a simple aiialytical procedure based upon tlie Popov 
criterion is presented to d&ermine in the parameter space the region of parameter 
deviations which do not violate the absolute stability. 

A graphical procedure for evaluatioii of the absolute stability regions in the 
parameter plane was given in siljak (1967). Under certain conditions that 
technique which is based upon the envelope criterion can also be extended to 
considerations in tlie parameter space. 

f Communicated by the Author. The research reported herein was supported by 
the Kational Aeronautics and Space Administration under the grant No. NGR 
05-017-010. 
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2. Absolute stabiIity in the parameter space 
The problem of Lur’e (1957) is formulated for a class of closed-loop control 

systems described by the equ a t’ ions: 
I 

.i. = Pz +$$(a), cr = rTx, (1) 
where 2, q, r are real n vectors, Pis a real n x n matrix, the pair (P, q) is completely 
controllable, and $(u) is a real continuous scalar function of the real scalar u 
such that it belongs to tlie class A ,  : $(O) = 0,  0 < u$(u) < KO,. One asks : .Is the 
equilib&nz state x= 0 of the system (1) asymptotically stable in the large for any 
r$(u)~d,, Le. is tJLe system absolutely stable! 

The most important solution of the problem of Lur’e was given by Popov 
(1963) in terms of the frequency characteristic : 

x(h) = rT(P - hl)-lq, (2) 
which is the transfer function of the linear part of the system (1) from the input $ 
to the output ( - cr), and A = 6 + j w  is tlie complex variable. Yakobovicli (1964) 
generalized the results of Popov and proved that if +(u) E A and all the roots of 
1 P - XI I = 0 are in tlie half-plane Reh < 6 5 0, and if there is a real number u such 
that a Popov type inequality : 

1 

~ ( 8 ,  w )  = A +Re (1 +jwv)  x(6 +jw)  > 0, V w  2 0, 
K 

(3) 

is satisfied, then there exist positive constants p and E such that, for any solution 
x(t)  of (1) and any t 2 t o ,  one has Ix(t)JspJx(to)lexp[(6-e)(t-to)]. 

Yskubovich (1963) also treated the forced system : 

(“ ) 
I ,  i: = / ) , I :  -I- pj(u) -I-,/([), (7 = Y‘X, 

wlicrc $(u) E A  , : $(o) = 0’0 < a+(cr) < K$, 0 < cr+’(cr) < m 2 , , . f ( l )  is a bounded 11 vector 
function on the interval ( - 00, + a), and showed that a modification of (3) : 

1 
~(6, w )  = - +Re x(6 +jw)  > 0, Vw 2 0, 

K 
(5) 

assures that there is a unique bounded solution xo(t) of (1) on (- co, + co) and 
that for any x(t) and t 2 to, one has Ix(t) - x , ( t ) l ~  plx(to) - xo(to)[ exp [(6 - e)(t - to)]. 
In  the same paper, Yakubovich (1964) treated the discontinuous functions $(a) 
and showed that the absolute stability is based upon the same inequalities (3) 
or (5). 

In application of the system (l), the linear part of the system coiitaiiis para- 
meters which may deviate from their nominal values. Then, it is necessary to 
relax the conditions on the linear part of tlie system and allow these parameters 
to vary in some neighbourhood of their nominal values while preserving the 
absolute stability of the system. 

Let us assume that the transfer function x(X, p l ,  p,, . . . , pi) is a function 
of h and 1 parameters (p,, p,, . . . , pE),  and let us suppose that the solutioii 
x(t, p, ,  p 2 , .  . . , pl) of (1) is well-defined (Petrovslci 1966) in the 1-dimensional 
euclidian space (p l ,  p z ,  . . . ,pl). Then, the definition of absolute stability for 
system (1) can be reformulated to include the parameter variations. 

The equilibrium state x = 0 of the system (1) is  said to be absolutely stable i f  i t  is  
asymptotically stable in the hrge for any +(u) E A , and any set (p,, pe ,  . . . , pl) E R. 



When the system (1) is specified, one is interested to find : (u) the greatest 
value of K and the largest region R ; ( b )  a value of K is given and the largest region 
R is to be determined. A graphical solution of these problems was given in 
Siljalr (1967) where the region R was determined by the envelope criterion as the 
largest set { ( p l ,  p z ,  . . . , pl)  E R1.r > 0, Vw 2 0). 

In  this paper, a simple analytical solution is presented which first yields the 
region R in terms of a set of algebraic inequalities involving parameters. Then, 
a rectangular parallelepiped of maximuin volume is embedded in the region to 
yield a convenient interpretation of the absolute stability region in the parameter 
space (this interpretation technique was proposed by George (1966, 1967) for 
approximation of &lite regions of asymptotic stability andlinear system analysis). 

Assume the transfer function of the linear part to be a rational function of 
the complex variable A :  

I 

in which the coefficients b, and ck are real functions of the parameters pi 
(i = 1,2, . . . ,1). Then, let us express : 

h k  = X,+jY,;, (7) 
d ie re  h = 6 + j w ,  and 

Functions X, and Y ,  can be easily calculated using the recurrence formulas: 
Xktl - 2X1X, + (X12+ Yl”)X,-,= 0,  Y,+,- 2X,Y ,  + (X12 f  Y,2) Y,-,= 0,  x, El, 
x, = 6, Yo E 0,  Y, = w. 

When 6 is specifiedin an absolute stability problem, and (7), (8) are substituted 
in (3)  or (5) ,  one obtains : 

where the coefficients ak = uk(pl, pz, . . . , pl) are real functions of the parameters. 
For convenience, in (9), 11“ and v of (3) are considered as parameters. Note 
that v is not a physical parameter and only its existence is required such that 

From (9), one can readily conclude that the system (l), or (3), is absolutely 
For this to 

r > o ,  v w 2 0 .  

stable if the corresponding polynomial ii has no positive real roots. 
take place, it is sufficient that the following set of algebraic inequalities : 

u,>o, a,20, ( k = 2 , 4 , .  . . , 2n) (10) 
is satisfied. 
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For example, if the transfer function : 

K = 1, and 6 = 0 ( A  =ju) are specified, one obtains (9) as : 

*(w,pl,p2,p3) ‘131w6+(14p1-p2+6)w4+(49p1+ 11pz-6p3- 6)w2+36p1+ 6 ~ 3 .  

(12) 
Inequalities (10) are : 

‘Pl S i 0 3  > O, 

4913, + 1 1 ~ 2  - 6233- 6 2 0, 

14p1 -p2 + 6 2 0, 

P l 2  0,  

which determine the boundaries of a. 
Inequalities (10) specify a region R(Rc R) of absolute stability-in the para- 

meter space which may appear to be an overly strict region since (10) are only 
sufficient conditions for rr > 0, Vw 2 0. Conditions (lo), however, lead to a con- 
venient interpretation of the stability regions. 

3. Interpretation procedure 
After the inequalities (10) are specified, the problem of using them in practical 

problems is essentially one of interpretation. Since the practical problems may 
involve more than two parameters, an interpretation procedure for multi- 
parameter analysis is desised. 

In general, t o  interpret the absolute stability region, let us imbed a parallele- 
piped IT into the convex region 2 determined by inequalities (10) which has 
sides perpendicular to the coordinate axes of the parameter space (pl ,  p2, . . . , p i )  
and centre at the known stable point z(Pl, p2,. . . , Pz). Let the volume v of II be 
defined as : 

= %?4- P2XP2 - P,) * * (Pz - a>. (14) 

Kow, the function v should be maximized with respect to each inequality (10) 
separately considered as a constraint. Thus, a constraint : 

Sub’stituting (16) into (14) and extremizing, a necessary condition for 
(p20, p20, . . . , p t )  to occur at a maximum of v is that it be a solution to : 

av -=O, ( i=2 ,3  ,..., I). 

Standard sufficient conditions for this solutioii to be maximal are given in 
(Goffman 1965). 
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Let the solutions (p2,p20, . . . ,P?)~, (k = 0,2,  . . . ,2n)  occur at maximum value 

IT=  (p1,p2 ,..., pJER ~ p ~ - ~ ~ ] ~ m i i i ] ~ ~ - p ~ l ~ ~ ,  (i=l, 2, . . . , Z)}. (18) 

$i2, . . . , pl) ,  

In case of tlie above specific example, let us choose the stable point 

of v subject to constraints (lo), then the desired parallelepiped IT is given as : 

{ .  I I 

Since each vertex point of IT is located in R containing the point 
it follows that the parallelepipe4 11 is completely embedded in R, i.e. I'I cR. 

X(0 .3  ; 0 ; 0). The volume to be*rnsximized is : 

'(PI - 0*2)P2P3* (19) 

(20) 

Ataximization of v with respect to the constraint : 

49p1 + llp2 - 6p3 - 6 = 0 

yields : p,O = 0.178, p,O = - 0.123, p,O = 0.226. 
parameters, the parallelepiped II is determined by : 

According to these values of 

1pl-O*21<O*022, Ip2150*123, 1p31<0*226. (21) 
One can readily check that all the vertex points of II satisfy tlie rest of the 
constraints of (13). Therefore, (21) is the solution of the interpretation problem 
under consideration. 

It should be noted that some of the constraint in (10) may not contain all the 
parameters, as it is clear from inequalities (13). Then, some of the parameters in 
incoiuplete inequalities are arbitrary and to make tlie maximization of v meaning- 
ftil, one should consider the arbitrary parameters as constants. 

For example, the optimization of v in (19) with respect to the constraint 
14pl - p ,  + Ci 2 0 of (13) should be performed withp, = c (c #O). Then, the maxi- 
mization of v = Sc(p, - 0 . 2 ) ~ ~  gives p,O = - 0.122, pzo = 4.292. In  applying eqn. 
(18) to determine the parallelepiped IT, these values are discarded and I'I is 
given by (21). 

I n  case of time-varying parameters, by the arguments of Yakubovich (1964) 
one can use the inequality (5) and prove the stability of either system (1) or (3). 
Then, as long as the parameters are varied inside the determined region (or IT) 
the system is absolutely stable. 
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PARAMETER ANALYSIS OF ABSOLUTE STABILITY* 

D. ‘Isiljak** 

A reformulation of absolute stability is used which includes 

variations of the system parameters. 

to determine the stability regions in the parameter space. 

a simple analytic test for absolute stability is presented. 

The envelope method is developed 

In addition, 

INTRODUCTION 

Absolute stability has the useful property that a considerable 

freedom’ is left to the form of the system nonlinear characteristic. 

is required that the characteristic belongs to a class of functions 

limited only by a certain sector condition. On the other hand, the 

parameters in the linear part of the system are specified numerically, 

which is quite an unrealistic constraint. 

from their nominal values and stability of the system may be destroyed. 

It 

The parameters always deviate 

This paper uses the reformulation of absolute stability [1,2] which 

relaxes the conditions on the linear part of the system and allows 

parameter variations. 

be used either to determine graphically the region of parameter variations 

where the stability behavior is preserved, or to calculate the parameter 

Then, the envelope method is developed which can 

*The research reported herein was supported by the National Aeronautics 
and Space Administration under the grant NGR 05-017-010. The paper was 
presented at the Second Symposium on System Sensitivity and Adaptivity, 
Dubrovnik, Yugoslavia, September, 1968. 

of Santa Clara, Santa Clara, California. 

V 
**D. Siljak is with the Electrical Engineering Department, University 



2 '  
values which yield the largest sector of nonlinear characteristics. 

In addition, analytic - test of absolute stability is presented which 

is based upon the Routh criterion. 

construction and is convenient for computer applications. 

The test requires no graphical 

ABSOLUTE STABILITY IN THE PARAMETER SPACE 

Free dynamic systems of the Lur'e class are described by equations 

T 
0 = r x , (1 1 2 = PX + q$(a), 

where x, q, r are real vectors, P is a real n x n matrix, and (I (a) is a 

real-valued, continuous function of a real scalar a which belongs to the 

class ( P ~ :  (1(0) = 0, 0 Lur'e introduced the definition of 2 
a+(.) 5 KO . 

absolute 

brim x 

Then, he 

absolute 

stability: 

System (1) is said to be absolutely stable if the equili- 

K 
= 0 of (1) is globally asymptotically stable for any 4 ~ @  . 
formulated the problem to find conditions on P, q, r, and K for 

stability of (1). [l] 

A useful solution of the Lur'e problem was given by Popov in terms 

of the frequency characteristic 

which is the transfer function of the linear part of (1) from the input + 
to the output -6 , and X = 6 + j w  is the complex variable. Assume that 

P is Hurwitz, that is, all zeros of A ( X )  = det(P - XI) 
half plane Re X 0 and x is nondegenerate. Then: 

are in the left 

System (1) is absolutely stable if the Popov inequality 

~ ( w )  = K - ~  + Re(l + j w u ) x ( j w )  > 0 for all real w 2 0 (3) 

holds for some real number u . [l] 
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In application of the system (l), the linear part of the system contains 

parameters which may deviate from their nominal values. 

necessary to relax the conditions on the linear part of the system and allow 

Then, it is 

these parameters to vary in some neighborhood of their nominal values while 

preserving the absolute stability of the system. 

Let us assume that the transfer function x(x, p) is a function of a 

and parameter 2 vector p , and let us suppose that the solution x(t, p) 

of (1) is well-defined for parameter values in a certain region R of the 

2-dimensional euclidian space {PI. Then, the definition of absolute 

stability for system (1) can be reformulated to include the parameter 

variations : 

System (1) is said to be absolutely stable if the 

equilibrium x = 0 of (1) is globally asymptotically stable for any 

@ e QK and any p E R . 
When the system (1) is specified, one is interested to find: 

(a) The greatest value of K and the largest region R ; (b) A value 

of K is given and the largest region R is to be determined. 

Inequality (3) can be rewritten as 
2 n(w> E I A ( j w ) l  IK-' + Re(1 + jwu)x(jwj  I a 0, 

where II is an even polynomial in w . Therefore, the Popov inequality 
(3) is equivalent to ' 

where the coefficients aZk = aZk(p), (k = 0, 1, = , n) of the polynomial 

II ; are real functions of the parameter vector p .. For convenience, 
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lftc and u of (3) are considered as parameters. Note that u is not 

a physical parameters and only its existence is required for s > 0 . 

"1. 

2.; 

From (4), we immediately conclude: 

Popov inequality (3) is satisfied if 

a. > 0, aZk 0, (k = 1, 2 ,  ... , n). (5) 

Inequalities (5) lead to a convenient interpretation of the absolute 

stability region R = {p: IT > 0, Vw > 0 1 in the parameter space. 

the inequalities provide only sufficient conditions for IT 0, Vu > 0, 

and quite conservative estimates of R may be obtained.{Z] 

However, 

Since the same inequality (4) appears in the analysis of exponential 

absolute stability 11-31, the results obtained here can be used to 

investigate exponential stability regions in the parameter space. 

ENVELOPE METHOD 

To describe the envelope method, let us take equality in (4) so that 

n(w, PI =, 0. (6) 

Equation (6) may represent a one-parameter family of hypersurfaces in the 

%-dimensional parameter space, w being the parameter of the family, For 

a fixed value of w , the corresponding surface S determined by (6) 

divides the parameter space into regions with H > 0 and H 4 0 . Now, 

let us assume that the surface S intersects every surface corresponding 

to a value w + AW ( I  A@ 1 sufficiently small). This intersection c can 
be represented by ' 

n(w, PI = 0, II(w + Aw, p) = 0 . (7) 

Since C lies also on the surface H(w + Aw, p) - n(~, p) = 0, we may 

replace second equation of (7) by 
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As the increment Aw tends to zero, we assume that the intersection C 

tends t o  a limiting position determined by equation 

(8) an - 0 
PI = 0, aw- 

This limiting intersection represents the so-called characteristic - curve C 

of the family of hypersurfaces (6). Geometrically, it is the curve on 

the hypersurface which contains every point of the set to which the points 
of intersection given by (7) tend when A@ -t 0 . However, C will contain, 
in general, also other points. 

of the family do not intersect at all but nevertheless determines a 

characteristic on each of the surfaces. 

It may even be that neighboring surfaces 

If the characteristics of the family (6) exist and if their totality 

obtained by letting w assume all possible values generates a surface 

E(p) = 0 , then that surface represents the envelope E of the family. 

It should be noted, however, that equations (8) may yield also singular 

- loci such as node-loci, cusp-loci, etc. [4] 

If the envelope E exists and is plotted for all positive values 

of w , then it is clear from above that the envelope E will "envelope" 

the convex absolute &ability region R = i p  : a > 0, V w > 0 1 (if such a 

region exists . ) 
To illustrate the envelope method, let us consider inequality (3) where 

p2 is an adjustable parameter, p1 = 1/~, and u = 0 . 
The polynomial is 
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By using this n(w) 

Figure 1. For w = 0 the second equation (8) vanishes identically and 

the corresponding part of the envelope is a locus, of singular points 

which is the straight line w = 0 . As w increases, the envelope E 

is represented by the curves AB and CD . Since p1 and p, enter 

linearily in (10) 

plpz plane a family of straight lines tangent to the envelope E.. All 

the tangents to the part CD of E are situated between the dashed lines 

on Figure 1 and do not enter the shaded convex region R. 

R = i(p,p,) : A > 0 , V w - > 0 1 

stability in the parameter plane. 

and equations (8), we obtain the envelope shown in 

n(w, pl, p,) = 0 represents in the parameter 

Therefore, 

is the desired region of absolute 

It should be noted that the introduction of an adjustable parameter 

in the linear part of the systems makes it possible to assure absolute p2 
stability for K = 1 A considerably smaller value of K is obtained 

if p2 = 0 which is far from the optimal value p, = 0.84. 

ABSOLUTE STABILITY TEST 

Let us find the necessary and sufficient conditions on the coefficients 

for the reformulated Popov inequality (4) to be satisfied. From (4), aZk 
we have obviously: 

Popov inequality (3) is satisfied if, and only if, the pblynomial E 

has no real zeros and a. > 0 . 
Since TI is an even polynomial, its zeros 

with respect to botl-f the real and the imaginary 

By rotating the zeros ninety degrees around the 

are distributed symmetrically 

axis of the w plane. 

origin, the nonexistence of 

real (positive) zeros of TI is equivalent to the condition that the 

polynomial 



has n zeros 

immediately. 

Note that 

treated in the 

the polynomial 

n(jw) is also even and second 

usual way by forming the second 

~ ( j w )  . Thus, the Routh array is 

aO ... -a2 

0' 
w "8 

. 

and the following is relevant: 

Popov inequality (3) is satisfied if, and only if, the polynomial TI 

Droduces a Routh seauence 

with exactly n sign"changes and a. > 0 . 
Note that this result is useful when K and u in (3) are specified, 

which is inherent in the Routh test. However, the test requires no 

graphical construction and is convenient for computer application. 

CONCLUSION 

The proposed envelope method applies to the extended version of 

absolute stability, which permits the parameter variations. 

the method has obvious advantage over the conventional frequency technique. 

Therefore, 

however, is e in easily visualized 

roblems. In case variable parameters, the 
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interpretation procedure of reference 2 can be more useful. 

The absolute s tab i l i ty  test is convenient when the parmeters are 

specified. 

application is straightforward. 

However, no graphical construction is necessary and the computer 

I t  can be extended t o  test positive 
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AN ANALYTIC TEST M)R ABSOLUTE STABILIm AND POSITIVE REALNESS* 

I D. Zi l jak 
Elec t r ica l  Engineering Department 

University of Santa Clara 
Santa C l a r a ,  California 

Abstract: 
t h e  Routh algorithm is proposed f o r  t e s t i n g  abso- 
l u t e  s t a b i l i t y  and posit ive realness. 

A simple numerical procedure based on 

1. Free dynamic system of t h e  Lur’e type 
a re  described by equations 

2 = PX + q+(u), (1) T u = r x I  

where x, qr r are  r e a l  n-vectors, P is a r e a l  
n x n matrix, and +(a) i s  a real-valued, contin- 
uous function of a r e a l  sca la r  u which belongs t o  
the class OK: $(O) = 0, 0 (a+(u) - < ~u~.[1,2] . 
We ask: Is the  system (1) absolutely s table ,  
i.e., i s  t h e  equilibrium of (1) globally asymp- 
t o t i c a l l y  s tab le  f o r  any g(u)E4,.  

part  i n  (1) i s  defined as 
2. Transfer function x(X) of t h e  l i n e a r  

where X = 6 + ju i s  the  complex variable. Assume . 
t h a t  x i s  nondegenerate and P is  Hurwitz, t h a t  is, 
a l l  zeros of A ( X )  = det(P - XI) a r e  i n  the  l e f t  . 
hal f  plane Re X < 0. 

inequality 

Then: 

System (1) is  absolutely s tab le  i f  t h e  

n(u)  f K-’ + Re(1 + juu)x(jw) > 0 
f o r  all r e a l  w 2‘0 

holds f o r  some r e a l  nmber u.[1,2] 

3. Inequality (3) can be rewrit ten as 

n(u) f b(jw)l ‘[tc-l.+ Re(1 + jwu)x(jw)l > 

and we conclude: 

POPOV inequaz ty  (3 )  is s a t i s f i e d  i f ,  and 
Only if, N has no r e a l  zeroa and a. > 0. 

This r e s u l t  w a s  used i n  t h e  envelope c r i te r ion  
[2,3] which provides a graphical technique f o r  ab- 
so lu te  s t a b i l i t y  analysis i n  the  parameter space. 

4. Since fl is  an even polynomial, i t a  zeros 

. 

are  dis t r ibuted symmetrically with respect t o  both 
t h e  r e a l  and t h e  imaginary axis of the  +plane. By 
rotat ing t h e  zeros ninety degrees around the  origin,  
the nonexistence of r e a l  (posi t ive)  zeros of II i s  
equivalent t o  t h e  condition t h a t  the  polynomial 

haa n zeros with posit ive real perts. 
algorithm can be used immediately. 

row of the  Routh array i s  ident ical ly  zero. 
i s  a special  case i n  the Routh algorithm and is 
t rea ted  i n  t h e  usual way by forming t h e  second row 
from the  derivative of the polynomial I I ( j w ) .  

The Routh 

Note t h a t  I I ( j w )  is a l so  even and t h e  second 
This 

Thus, 
the  Routh array i s  

PODOV ’ 

w 2n-11 (-1) n 2na2, (-1) n-1 (2n-2)a2n,2 ... -2a2 
. .  . 

4 .  

and t h e  following i s  relevant: . - 

Popov inequality (3 )  i s  s a t i s f i e d  i f ,  and only O* 

ore e 
if, t h e  polynomial n produces a Routh sequence . where n is an even polynomial i n  w. Theref 

t h e  Popov inequality ( 3 )  is  equivalent t o  n 
(-l)na2n, (-1) 2na2nr ... * %  

n 

k=O 
n ( w )  E I: aUr w2” > o (4) with exactly n sign changes and a. > 0. 

i n  (3 )  a r e  specified,  which is inherent i n  t h e  
Routh t e s t .  

Note t h a t  t h i s  resu l t  is useful when L: and u 
for  a l l  r e a l  w 2 0 ,  . 

5. I n  view of (4)  t h e  following simple pro- 

Popov inequality (3) i s  s a t i s f i e d  if 

* The research reported herein was supported by 
the Hational Aeronautics and Space Administration 
under the  grant HGR O 5 O l 7 - O l O .  

posit ion can be use‘d t o  test absolute s tab i l i ty :  : 
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a. > 0,  a > 0, (k = 1, 2, ... , n). (5). ' and can be obtained by recurrence formulas 2k - 
2 Inequal i t ies  (5) l ead  t o  a convenient inter-  %.+l - 25% + 'x; '+ Y1 ,xk,l = 0 

- 2X1Yk + (xl 2 2  4 Yl )Ykml = 0 

I I (w)  I (A,2 + A2 2 )K -1 + (A2rl - A 

pretat ion of absolute s t a b i l i t y  regions i n  the  
parameter space [ 4 I. 

'k+l 
6 .  Exponential absolute s t a b i l i t ~ [ 2 ]  re- 

quires t h a t  an extended version of Popov's in- 
equality 

where Xo = 1, X1 @ d ,  Yo p 0, Y 
By using (7) and (9) i n  ( 

n(w) a K-' + Re(l + jwu)x(6 + jw)  > 0 (6) 
f o r  all real w 2 0 

+ A r + A2rle (10) 1 2  

Cmen K) u, 6 a re  specif ied numerically, w e  
can apply the Routh tes t  of pa r t  4 t o  prove ex- 
ponential s t a b i l i t y .  
of 5 and Yk functions makes the  proposed test  
easy.for  computer application. 

be ' s a t i s f i ed  f o r  a given 6 and some U. 

e q a i t y  (4). Express 
Inequality ( 6 )  can be transformed i n t o  in- 

Note t h a t  t he  introduction x ( X )  = Ul (7) 
A(A) 

where r and A are real polynomials 
7. 

, tive r e a l  i f  
Note t h a t  A i a  Hunritz and x ( X )  is e- 

k=O k=O ~ ( J w )  2 o f o r  a1.1 r e d  W. (11) 

. .  n(w) f A r + A2rlD (12) 

( 8) k n m k  I' I E. bkX *. A P I: ckX 

and rn < n. By subst i tut ing A 6 +, 30 in (8). we From (10) 
obtain 

1 2  r = rl + jr,: A + J A ~  (9) 
and we can apply t h e  proposed tes t  t o  612) and 

all real w" is equivalent t o  "for a l l  r e d  w 
where ver i fy  (11). Since II is even, the statement "for - 0". 

' r n  n 
'1 X= k:o bkXko '1 kEo 'k% References 
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3 1 Regions of exponential stability for the problem of Lur'e") 
Bereiehe der exponentiellen Stabilitat beim Problem von Lurje 

1 By D. SILJAK**) and S. WEISSENBERGER, Santa Clara, California (USA) 

This paper proposes a inetliod for computing finite regions of 
exponential stability from solutions of the absolute stability 
probleni. A best quadratic estimate of the regions is found for 
a class o fkd inear  characteristics which belong to a modified 
Lur'e sector. For a class of nonaritonomous differential 
equations, a bound on the forcing function is found which 
guarantees that all the corresponding solutions remain inside 
the computed region. 

Es wird ein Verfahreii vorgesclilageti, mit dem endliche Bereiche 
der expotientiellen Stabilitat airs der Losuiig des Problems der 
absoliiten Stabilitat berechnet werden konnen. Fur cine Klasse 
con riichtliiiearen Kennlinien, die t u  einem modifzierten Lurje- I Sektor gehoren, wird die beste quadratische Schdtzung der 

1 Bereiche bestimmt. Bei einer Klas;re von nichtautonomen 
Di~erentialgleicliirngen wird cine Beschrankung der Eingangs- 
grope berechnet, die sicherstellt, daJ alle zugeh6rigen L&ungen 
in dem ausgerechneten Bereich bleiben. 

1. Introduction 

)e Lur'e problem El], [2] consists in finding a class of non- 
linear characteristics for which the equilibrium point of 
otherwise linear differential equations is globally asymp- 
totically stable. In posing this problem, however, often un- I realistic assumptions are made regarding the structure of the 

I differential equations in order to achieve the analytical 
simplicity of global stability. It is clear that physical networks 
and systems are not globally stable, nor is there any practical 
reason to make them so: it is desirable only to make the region 
of asymptotic stability sufficiently large. Consequently, a 
modification of the Lur'e problem was proposed [3], [4] to 
include cases with finite regions of asymptotic Stability. 
This paper proposes an extension of results obtained in [2] 
to [4] to estimate finite regions of exponential stability, thus 
providing additional information about how fast the solutions 
approach the equilibrium point. Computational aspects of 
constructing appropriate Liapunov functions are also 
discussed. Furthermore, the property of exponential stability 
makes it possible to consider a class of nonautonomous 
differential equations and determine a bound on the forcing 
function which guarantees that all the solutions remain 
bounded inside the computed region. 

2. Basic equations 

Let us consider the Lur'e class of differential equations [l] 

! 

I 

i 
1 
1 

R = P x  + qcp (o), 0 = rTx (1)***) 
*) The research reported herein was supported in part by the National 

onautics and Space Administration under the Grant' No. NGR 

**) D. SiIjuk and S. Weissenberger are with the University of Santa 
Clara, Santa Clara, California. 
***) Capital Roman letters will denate matrices, lower case Roman 
letters will denote vectors, capital Greek letters will denote sets, and 
lower case Greek letters will denote scalars. The letter t will be used, 
only for the time, and the letter Vonly for a Liapunou function. Vectors 
will be considered as column matrices, and thesuperscript Twill denote 
the transpose. The notation H > 0 will mean that His a positive definite 
real symmetric matrix. I is the identity matrix. 

h7-010.  

i. ! 

where x, q, r are real v-vectors, P is a real Y x $1 matrix, the 
pair (P, q)  is completely controllable, (rT, P )  is completely 
observable, and 'p (a) is a real continuous scalar function of 
the real scalar a such that the sector conditions 

(2) 
0 < ocp (0) < xn2, o* 0 

cp(O)=O 

are satisfied. Functions 'p (a) with properties (2) are. said to 
belong to the class @%. 

On the basis of Popov's results 111, kakubovich [2] showed 
that if x + m, 

TC (o) = ;+ Re x (- 6 + jw) > 0, V a  20 (3) 
1 

where 
(4) 

1 = - 6 + jw,  and the roots of IP - LZ] = 0 are all in the 
halfplane R e l  < - S I 0, then them exist two positive 
constants e and E such that for any solution x (t) of (1) and 
any t 2 to, we have 

Ix (N e IX(l0)l  exp c-(8 +4(t- tol l  9 ( 5 )  

that is, the equilibrium point x = 0 of (1) is globally expo- 
nentially stable with degree of stability 6 for all rp E @%. 

If x = e, condition (3) sliould be supplemented by 

lim o 'Rex (- 6 + jo) >O . ( 6 )  
o-tm 

According to the Yakubouich-Kalman lemma El], conditions 
(3) and (6) are necessary and sufficient for the existence of a 
Liapunov function 

v ( x )  = X T  H x 

- v = [ x T G 0 ~ + 2 x T g c p + x  -1  'p 2 ] 

(7) 
having the derivative along solutions of (1) as 

+ (. - cpx- 1) cp -I- 2 6 v (8) 
where 

(9). 
1 

-Go= H P o +  P:H, - g= Hq+-r 2 

and Po = P +. 51 is Hurwitz [2]. The matrix H > 0 satisfies . 
the following matrix inequalities: 

(10) 
Go-xggT>O, for x + m ,  
G,>O,g=O, for x=m. 

3. Regions of stability 

As noted above, the satisfaction of condition (3) implies that 
the equilibrium point of (1) is globally exponentially stable 
for q~ E Ox. If, however, the nonlinearity leaves the sector (2) 
for lul 2 6, that is, cp E Ox, (I where the class OZ, is defined by 
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then the property of exponential stability will be of finite 
extent in the state space. A region Q, of exponential stability 
is defined as the set of all points xo = x (to) for which solu- 
tions of (1) starting at xo are exponentially stable with the 
degree 6. 
We assume that (3) is satisfied for some 6 and x,  and that 
cp E CP,, a for some a. Then one is interested to find the largest 
region a, (a, c Q,) defined by 

where the constant p is determined from 

@=niin V ( x ) .  
l&dl =a 

Since cr = r*x and V ( x )  = xTHx, it can be shown from (13) 
that 

p = a’ ( r  TH - r )  - ‘ . 

a,= (X I X ~ H X  < P I .  

~ (14) 
Therefore, with (14), (13) reduces to 

(15) 

Now the problem is to find the matrix H > 0 in (15). 
A search for an appropriate matrix H can proceed in two 
different directions based upon the results obtained in [3] 
and [4]. A specific matrix H can be found from 

H P , + P ; H =  - U U ~  (16) 

if x (w) of (3) is rewritten as 

and u is chosen such that 

as suggested in [3]. 
Another approach is to generate a set of appropriate H 
matrices directly from the matrix inequalities (10) [4]. By 
applying the Sylvester inequalities, we reduce (10) to a system 
of algebraic inequalities involving the elements of H. This 
approach allows a certain freedom in choosing the corre- 
sponding Liapunou function (7). In general, each Liapunov 
function produces a different region a, with respect to extent 
and orientation, and it is desirable to select one which pro- 
duces in some sense the best estimate of the region a,. A way 
to find a “best” estimate 5, is to maximize the volume of a, 
(a simple matter for quadratic regions) on the set of generated 
H matrices as suggested in [SI. 
To illustrate the analysis of the second approach, consider 
the equation 

The Popou condition (3) is satisfied for x = 00 and 0 S, 6 S 1. 
From (lo), g = 0, ‘P 

!a (20) 

and the region is 

2 h, ,x: + 2 xlxz + x i  <az (21) 

for aIIpcp@,,.. 

The condition Go > 0 in (lo), yields the Syfuester inequalities 

h1,<2/6, 
1 h l 1 -  (6 - 2)’1 < [(S - 2)4 - 6’ +4 6 +4]”’. (22) 

The area of a, is x(x2 (2 h,, - 1)--1/2 and the maximum-area 
region is produced by the least hll satisfying (22). Apparently, 
the extent of the region 5; is a function of 6. For instance, the 
area of Go is more than three times the area of 

4. Boundedness 

Consider now the equation 

(23) T i = P x + q c p ( a ) + f ( t ) ,  o=r  x 

with the forcing function f ( t ) .  In [2], it is shown that if 
condition (3) holds, then for every f (t) bounded on (- m, 
+ a) and 9 E di,, there exists a bounded region such that 
the solutions x ( t )  of (23) which start in 17 remain there for 
all future time. In addition, there exists on (- w, + to) a 
unique solution xo (t) E 17 which is exponentially stable in the 
region IT with the degree 6, that is, there are two positive 
constants e and E such that for any t 2 to and any solution 
x (t) E IT, we have 

Ix(t)--xO(t)l (24) 
l e  I ~ ~ ~ o ~ - - x 0 ( ~ 0 ~ l ~ ~ P C - ~ ~ + ~ ~ ~ ~ - - o ~ 1  * 

We now proceed to compute a particular bound on f (t) which 
will guarantee that I7 E a, for all cp E 

We seek a bound 5 on f (t), 

If(t)l<& t d - - ,  +a> (25) 

which guarantees that no solution of (23) leaves the region 
This property of solutions is assured by requiring that the 

derivative of V along the solutions of (23), which is denoted 
by p(23) be negative on V = p. According to (23) 

$2 3)  = 6 1 + 2 X ~ H ~  

ql)< -26V. (27) 

qZ3)< -26V+2xTHf. (23) 

V = x T H x l q  1x1’ (29) 

(26) 

where p(,) is given in (8). For x E H, and cp E ex, 

Therefore, from (26) and (27), we get 

Also, 

and xTHf I 5~ 1x1 where 

where A,, (,u = 1, 2, . . ., w) are the eigenvalues of the matrix H. 
Combining (28) and (29), we conclude that p(23) < 0 for all 
1x1 > [/6 and X E  a,. Consequently, if the sphere 1x1 = 516 
is contained inside a,, then all solutions which start inside 0, 
remain there for all future time. The largest value oft  which 
assures this property of a, is given by 

5=s(p/q)”2. (31) 

It is of interest to note that the bound 5 on the forcing func- 
tion f (t) in (31) depends directly on the degree 6 of exponen- 
tial stability. 



. Conclusion 
1s has been shown how finite regions of exponential stability 
can be estimated for a Lirr'e class of differential equations. 
Two methods of computing the corresponding Liupunov 
functions were indicated. When the differential equations 
contain a forcing term, the Linpirriou function can be used to 
give information about the boundedness of solutions. 
A significant extension of the proposed method would be to 
consider Lioprrnov functions of the complete Lur'e type, that 
is, "a quadratic form plus an integral of the nonlinearity". 
The additional term in the Liupitnov function will allow 
iniproyement of the estimates of the stability regions. Future 
work should also be devoted to the computational aspect of 
the problem. 
The presented results can be extended to cases when the 
differential equations have discontinuous nonlinear charac- 
teristics. Moreover, forcing terms which depend on both the 
states and time can be considered. 
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Mitre i I u ng en - 

WAC-Symposium ,,Technical and Biological Problems 
of Control" 
Von H. M. LIPP, Karlsruhe 

Vom 24. bis 28. September 1968 wurde in YerevanIArmenien 
(UdSSR) ein von der International Federation of Automatic 
Control (PAC)  veranstaltetes Symposium iiber ,,Technical 
and Biological Problems of Control" durchgefuhrt. Diese 
vom sowjetischen nationalen Komitee fur Regelungs- 
technik organisierte Tagung ist rnit dem Ziel veranstaltet 
worden, durch die Begrenzung auf einen relativ kleinen Be- 
reich des Regelungs- und Steuerungsgebietes einen moglichst 
intensiven Informationsaustausch zwischen den Teilnehmern 
zu erreichen. Von den etwa 300 Teilnehmern dieses Sympo- 
siums (darunter 130 aus anderen Landern ais der Sowjetunion) 
waren 126 Vortrage eingereicht worden, die acht Themen- 
hereiche ergaben : 
)I. General Problems of Physiological Mechanisms; 
11. Models of Neuronal Structures; 
Ill. Movements Control; 
1V. Bioelectric Control and Artificial Organs; 
V. Computer Use for Biological Information Processing; 
VI. Man-Machine Interaction in Control Systems; 
VII. Pattern Recognition; 
VIII. Adaptive Systems. 

Im Rahmen dieser Zeitschrift sind vor allem die Themen- 
gruppen VI bis VI11 von Interesse. Die hier gegebene uber- 
sicht beschrankt sich daher auf diese Bereiche. 
Probleme des Zusammenwirkens von Mensch und Maschine 
in Regelsystemen wurden in drei Vortragen behandelt. Zwei 
der Referate untersuchten technisch-physiologische bzw. 
-psychologische Aspekte, im dritten versuchten die Autoren 
die Hauptrichtungen dieses Forschungsgebietes systematisch 
darzustellen. Drei Punkte sind dabei wesentlich: 
1.  Optimale Verteilung von Funktionen zwischen Maschine 
und menschlichem Operator. 2. Optimale Koordinierung von 
Operator und den die Information prasentierenden Einhei- 
ten. 3. Auswahl und Schulung des Operators. 
Die Gruppe Zeichenerkennung war rnit zwolf Beitragen am 
umfangreichsten, wobei die Vortrage thematisch sehr ver- 
schieden waren. Einer der Vortragenden berichtete uber die 
Zeichenerkennungsfahigkeit bestimmter nichtlinearer Filte- 
rungen in Form sogenannter ,,polynomial machines". Weitere 
Arbeiten mathematischer Natur behandelten die Bestim- 
mung von Wahrscheinlichkeiten bei Musterfolgen und Pro- 
bleme bei der linearen Separierung von Mustern. Zwei der 
Referate befafiten sich mit der Generalisierung von Mustern 
und den entsprechenden Prozessen. 
Die Klassifizierung optisch vorliegender Zeichen wurde in 
nur einem Vortrag untersucht. Zwei Arbeiten zeigten Pro- 
bleme auf, die bei der Verarbeitung und Erkennung multi- 
dimensionaler Informationen, vor allem bei experimentellen 
Daten aus Biologie und Medizin, entstehen. 
Adaptive Systeme waren Gegenstand von drei Vortragen. 
Eines der adaptiven Modelle zur Beschreibung von Regel- 
systemen fur zeitoptimale Regelung schien gute Ergebnisse 
bei der praktischen Anwendung zu zeigen. Die Approxima- 
tion der optimalen Steuerfunktion konnte dabei erfolgen 
wahlweise uber 
a) stuckweise lineare Darstellung mit konstanter Intervall- 
Iange und adaptiver Veranderung der Steigung des Segments, 
b) stuckweise lineare Darstellung mit variabler Intervall- 
Iange und fester Steigung des Segments und 
c) nichtlineare Beschreibung. 
Ein weiterer Beitrag dieser Gruppe behandelte die optimale 
Bestimmung von Systemzustanden durch Messungen mit 
minimalen Kosten. 
Obwohl die relativ kleine Zahl von Teilnehmern und Vor- 
tragenden einen intensiven personlichen Kontakt ermog- 
lichte, wird der Nutzen der Vortrage selbst vom Rezensenten 
nicht zu hoch eingeschatzt. Die fur jeden Vortragenden vor- 
gesehene Zeit von 20 Minuten wurde durch die (ohnehin 
problematische) Satz-fur-Satz-ubersetzung erheblich redu- 
ziert, so daR kaum die Moglichkeit bestand, tiefergehende 
Betrachtungen wiederzugeben. Da die Veroffentlichung der 
vollstandigen Beitrage erst nach der Tagung erfolgen wird, 
konnten die Teilnehmer nur iiber personlichen Kontakt 
Naheres zu den einzelnen Arbeiten erfahren. 

Heinrich Toeller, Ehrensenator der Technischen Hochschule 
Darmstadt 

Dr.-Ing. Heinrich Toeller wurde am 29. November 1968 zum 
Ehrensenator der Technischen Hochschule Darmstadt er- 
nannt. Damit wird eine Personlichkeit geehrt, deren Weit- 
blick und Uneigennutzigkeit wir in der wissenschaftlich- 
technischen Gemeinschaftsarbeit auf unserem Fachgebiet 
entscheidendes verdanken. So hat sich H. Toeller personlich 
und mit Nachdruck in der Arbeit der Ingenieur-Verbinde 
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REGIONS OF EXPONENTIAL BOUNDEQNESS ' 
FOR THE PROBLEM OF LUR'E 

I). h j a k  S. Weissenberper 

University of 
Santa Clara, 

Abstract ' 

T h i s  paper considers forced systems 
o f  t he  Lur'e type i n  which t h e  nonlinear- 

' $ ty  v io l a t e s  t he  sec to r  condition i n  the  
neighborhood of the  or igin.  It i s  shown 
t h a t  t h e  s a t i s f a c t i o n  of a Popov condition 
and the  bo-andedness of t h e  forc ing  func- 
t i o n  and the  nonl inear i ty  (where the  sec- 
t o r  condition is v io la ted)  imply t h e  expo. 
n e n t i a l  boundedness of t he  system motion. 
Quadrat ic  Liapunov funct ions are used t o  
obtain est imates  of t h e  region which sys- ' 

tem motions en te r  sooner than an exponen- 
t i a l .  

Introduct ion 

. 

The c l a s s i c a l  Lur'e problem con- 
sists of f ind ing  conditions under which 
the  equilibrium of a system w i t h  a s ing le  
nonl inear i ty ,  r e s t r i c t e d  t o  l i e  i n  a 
spec i f ied  sec to r ,  is  global ly  asymptoti- 
ca l ly  s tab le .  By modifying the  Popov 
so lu t ion  of t h i s  problem, Yakubovichl 
s t a t e d  the  conditions under which the  
s t a b i l i t y  is exponential ,  thus  adding 
information about how fas t  the  equi l ib-  
rium is approached. Later, t he  c l a s s  of 
L u t e  systems w a s  enlarged by allowing 
t h e  nonl inear i ty  t o  ul t imately leave the  
sec to r ,  a t  the  expense of l imi t ing  ex o- 
n e n t i a l  s t a b i l i t y  t o  a f i n i t e  region. s 

I n  t h i s  paper,  t h e  c l a s s  of Lur'e I 

systems is f u r t h e r  broadened t o  include a 
number of p r a c t i c a l  s i t u a t i o n s  i n  which , 

t he  nonl inear i ty  is outs ide the  sec to r  i n  
t h e  neighborhood of t he  o r i g i n  but ul- 
timate y e n t e r s  t h e  sec to r  and remains 

t i o n s  of t he  system are considered. A 
Popov condition is  used t o  guarantee 
(exponential boundedness, and est imates  of 
t h e  region which system motions ulrtimate- 
l y  en te r  are provided by mean8 of quadra- 
t i c  Liapundv functione. 

there .  3 Furthermore, bounded perturba- 

.. 

. .  

* The reeearch reported herein was 
supported I n  p a r t  by t h e  National 
Aeronautics and Space Administration . . 
under t h e  grant NGR-05-017-010.. . . .' 
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Exponential Boundedness 

L e t  u s  consider a forced 6 stem 
of the  Lur'e type described by t i e nth- 
order  equation 

0 

(I)* T x Px + qcp(0) + f ( x , t f ,  Q - r x 

where the  funct ion q ( a )  satisfies t h e  
conditions 

( 2 4  

(2b) . 

and K > '0, a, 8 2 0. I 

For l a \  > a, cp is assumed t o  be contin- 
uous, whTle f o r  a, cp is allowed t o  , 
be discontinuous and multivalued. The 
funct ion f (x , t )  is bounded, 

I f ( x , t ) l  5 y ' ( 3 )  , 

where y 2 0. 

Under the  s t a t e d  conditions,  t h e  
system (1) may not be s t ab le  i n  the  sense 
of Liapunov, but its motions can exhib i t  
boundedness proper t ies  O f  p a r t i c u l a r  
i n t e r e s t  a r e  systems whose motions, 
beaides beinp bounded, a l l  en t e r  at a w e  
time a ce r t a in  bounded region n and s t a y  
there  for a l l  fu tu re  time--the motions 
a r e  ul t imately bounded. Moreover, one 
would l i k e  t o  have a quant i ta t ive  esti- 
mate of t he  r a t e  a t  which t h e  motions 
approach t h i s  region 0. 
comparison funct ion i s  t h e  exponential 
and we a r r i v e  a t  the  following: 

A common 
' 

* Lower case Roman l e t t e r s  denote 
vectors ,  c a p i t a l  Roman l e t t e r s  denote 
matrices,  lower case Greek l e t t e r s  denote 
s c a l a r s ,  and c a p i t a l  Greek l e t t e r s  denotc 
sets. Vectors w i l l  be considered as 
column matrices,  and superscr ipt  T denotes ' 
t he  transpose. The notat ion H > 0 will 
mean t h a t  H is a pos i t ive  de f in i t e  r e a l  
symmetric matrix. I is t h e  i d e n t i t y  ,, 
matrix. The l e t t e r  t is used for t h e  
t i m e ,  and t h e  l e t t e r  V for  a Liapunov 
function. The region nc is t h e  compU- 
ment of n. 

a '  ' 
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Definition: 
equat ion  I '  

Solut ions x( t ,x,, t i )  of t h e  . t h e  matrix P6 is  assumed t o  be Hunuftz 
y d  a y t r I X  H > ' O  exists such t h a t  t he  

, nequal t ies  
x = p(x , t )  (4) Q = C - X g g  T > O ,  x + *  

a r e  exponentially bounded with respec t  t o  a compact region d i f :  Q = G > O ,  8 ; - 0 ,  n = - ,  
1 

a) there e x i s t s  a t 2 t such 
t h a t  x(t ,xo,to) c fl f o r  a l f  xo,eo,t 2 tl; 
and 

b) t he re  e x i s t  two pos i t i ve  
numbers C and 6 such t h a t ,  i n  QC,  
l t ( t , x  ,t ) I <  Clx I exp 
a 1 xO0c 

Clearly,  t h i s  de f in i t i on  implies 
ultimate boundedness. 

BY using well-known r e s u l t s 4  we 
can provide su f f i c i en t  conditions f o r  . 
'exponent la1 boundedness of so lu t ions  of 
equation (4 ) :  

Theorem: L e t  fl,, be a compact region . 

- toll for 
Orand 811 to. 

' fx :  V ( X  5 v 

p a r t i a l  der ivat ives ,  and 
wGere v > 0- V(X) be a 

scalar 1 1  unct on with continuous first . 

( 5a) 

v - -  , 1x1- - . (5b) 

C v > o  9 x c f l ,  

, - + - 2 6 V > O ,  x e f l t  (5c) 

where i = dV/dt = (vVjTp and 6 > 0.' Then 
the  so lu t ions  of equation (4)  are expo- 
n e n t i a l l y  bounded with respec t  t o  

ny - {x: v(x) 5 v + e}  . f6) 
where c > 0 is arbitrary. 

for equation (11, l e t  u s  use t he  funct ion 
To gmrantee  exponential  boundedness ' 

(7) . T V - X H X .  
By t he  Yakubovich-Xalman lemma 6 

t h e  s a t i s f a c t i o n  of t h e  Popov condition 

x-' + R e  x(-6 + j w )  > 0 f o r  a l l  
real  u) 2 0 where x(k) = r T (P - XI),'q, 

-? - 26V = x T (G - xgg T ) x + xo1(xg%+ (p)* 

. --$ = 2av = x T cx + ag - 2. x T nf, x - - (9b) 

results i n  

-1 T +(a - X C p ) C p  - 2 X H f ,  ' X  f * (9a) 

are sa t i s f i ed .  , 

According t o  the  lemma, t h e  funct ion 
V i n  (7) satisfies t h e  condition (5a,b) * 

above. 
t i o n  (5c) we make use of t h e  assumptions 
(2 )  on cp. By using (2)  and ( 3 )  in ( 9 )  
and applying (7) and (10) we obta in  

To e s t a b l i s h  the  remaining condi- 

0 i - 26V 2 xTQx XHylxl- ~ , I o l < ' a  (la) - * - 26V 2 xTQx - XHylxl , .  I u l r  (12b) 

where 

p = (a  + W ' l 8 )  0 ,  (13) 
and X 
From y12), we conclude tha t  t he re  e x i a t s  a *, 

region Q v  (and thus  n)outs ide which t h e  
condition (5c)  is  satisfied. Thus, when- 
ever  t h e  Popov condition ( 8 )  is s a t i s f i e d ,  
the motion of t he  system (1143) i s  expo- 
nen t i a l ly  bounded. 

To determine a region Qv i n  (6), it 
is necessary t o  compute V from 

i s ' t h e  l a r g e s t  eigenvalue of H. 

u = max V(X)  (us) ._ 
xoh 

where A is  the  boundary,of any compact 
region outs ide which - V - 26V 5 0 every- 
where. S tandard  techniques of nonlinear ' 
programing can be used t o  compute v: 

The least  conservative v is 
obtained by choosing A - hlU A 2 U A 3  where 

T T A1 = Ex: x Qx - XHylxl- u, ]r x l r  Q) (15a) 
A 2  - {x: Ir T X I -  'a, 0 xTQx - xHylx[ 

Computation can be f a c i l i t a t e d  by . 
accepting more conservative estimates of 
v. For example, we may take as t he  
cons t ra in t  f o r  maximization of V(x) in 
( 14) 

A rx: X Q I X I ~  - xHYixl 3 c1) (161 
which represents  a spher ica l  surface en- 
c losing t h e  s e t s  A,, A3 ,  and A,. I n  con- 

. where 
. .  

ae use of th6 . inequal i  
e XQ is t h e  smallest  

1, t h e  radius 'P 



$8 g i i e n  by apply d i r e c t l y  t o  systems with discontin- 
uou8 non l inea r i t i e s  when motions are 
supplemented with the  s l i d i n g  regime.' ' (17): 
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l i n e a r i t y  would be necessary t o  ruarant e Parameter Analysis and Design", 

Wiley, New York, 1969. Final ly;  note t h a t  t h e  obta ined . re t ju l t s .  

8 - 

The 
t h e  exponential property of t h e  motion." 8 

I -,  
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ABSOLUTE STABILITY TEST FOR DISCRETE SYSTEM!* 

A numerical absolute stability test for nonlinear discrete 
system is proposed. The test is derived from the similar test for 
continuous systems [I] by the use of the bilinear transformation. 

8.: 

A free discrete system of the Lur’e type is described by the 

difference equations 

where x , q , r are real vectors, P is a real n x n matrix, 

and +(a) 

a which belongs to the class @K : +(O) = 0, 0 a+(a) KU , K < + . 
is a continuous real scalar function of the real variable 

2 

is the complex variable, 6 
T Denote by G(z) = r (P-zI)-’q , where z 

the transfer function of the linear part of (1). Let P be Hurwitz, 

that is, all zeros of A(z) = det(P-zI) 

Izl = 1 . Then (Tsypkin [ Z ] ) :  

are inside the unit circle 

Theorem 1: System (1) is absolutely stable if 

Instead of verifying (2) by the usual graphical construction, the 

system stability can be determined analytically by a simple transformation 

convenient for computer calculations. 

*This work was supported by NASA Grant NGR 05-017-010. 
, 
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Let 

c ciz= 
i = O  

then, by using the bilinear transformation 

l + w  
z - 7  

(2) can be rewritten as 

K-I + Re G1 ( jv)  > 0 V real v > 0 - 

where 

n 

B(w) k = 0 

k = O  

Gl(4 = = 
k 

e ' k W .  

( 5 )  

and w = j v  .,.Coefficients in (6) are 

(7) 
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’ Inequality (5) is equivalent to 

i: 
where n(v) is an even polynomial 

2k n 
n(v) E c aZk v 

k = O  
. (9) 

From (8) and (9) we conclude: 

Theorem 2: Inequality (2) is satisfied if and only if R(v) 

has no real zeros and a. > 0 . 
To verify conditions in Theorem 2, we can use the Routh test as 

prbposed in reference 113 : 

Theorem 3: Inequality (2) is satisfied if and only if the 

polynomial TI produces a Routh sequence 

with exactly n sign changes and a. > 0 . 
Note that this result is useful When K is specified, Then the 

coefficients aZk of TI in (9) are given numerically. Coefficients 

can be calculated from Bk and C by a a2k k recursive algor i t h  
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Theorem 4: Inequality (2) is satisfied 

> 0 , k =  1,2 ,..., n ;  and 
_. if a. > 0 , a2k- - 

b) only if the number of sign changes in the coefficients 

is even. a2k 

This result can be used as a simple test to conclude absolute stability. 

The proposed absolute stability criterion can be extended directly 

to systems with multiple nonlinearities. 

that the test should be applied as many times as there are principal 

minors to be checked for positive definiteness of a given matrix [3], 

It is only necessary 'to note 

C. K. Sun 

University of Santa Clara 

Santa Clara, California 
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9: 
Adaptation Using S ingu la r  Lines 011 the  Parameter Plane.  

R. A .  DESROSIEKS G. J, TII-iALZl? 

Naval. Postgraduate  School, BIcmL:lereyr C a l i f o r n i a  93940 

--- In t roduc t ion .  - 
ve1,oped by $: i t rovicl ,  S i l j a k 2 r  3; and o t h e r s 4 )  5 z  por t r ays  t h e  
r e l a t i o n s h i p s  between the  r o d t s  of the c h a r a c t e r i s t i c  equat ion 
and t h e  parameters of the  sys ten .  Its b a s i s ,  thereFore,  i s  i n  
l i n e a r  theory.  I t  has a l so  been shlowii t h a t  when the pararneters 
of the system vary t h e  opera t ion  of such nonl inear  systems may 
be repxcsented on the parameter p lane  by l e t t i n g  t h e  operaking 
p o i n t  (i!/i_-point) move, This technique successfully p r e d i c t s  
limit cyc le s3  and t h e  t r a n s i e n t  response6*7 of the  nonl inear  
systeni, and seems t o  be app l i cab le  under t he  same condi t ions  
t h a t  c o n s t r a i n  the use  of desc r ib ing  func t ions ,  When the  con- 
d i t i o n s  t h a t  e x i s t  i n  a c o n t r o l  a p p l i c a t i  cm require adap ta t ion  
of the  feed-back loop soxe method m u s t  be devised! f o r  i d e n t i f y -  
i n g  the change wit'nin t h e  system; and a means of adjustment 
must be provided which is capable  of countexacking the  e f f e c t s  
of the parameter v a r i a t i o n .  

The c o e f f i c i e n t  pl-me' and paraxe ter  plane a s  de- 

. This  paper  i s  concerned with a method for providing the  
needed adjustment.  I f  t he  system can be designed so  t h a t  its 
parameter p lane  equat ions  provide " s ingu la r  lines" a t  sui table  
r o o t  va lues ,  then an adjustment i s  obtained which permi ts  t he  
sys tex  to coun te rac t  a pa rane te r  v a r i a t i o n  and r e t u r n  i t s  ba- 
s i c  mode of ope ra t ion  t o  e x a c t l y  t h e  o r i g i n a l  dorninznt: roctt 
condi t ion .  

Parameter Plane Theory - Sinqular  L i n e s  

k Given a polynomial 

F(s )  = l aksk  = o 
4 0 

' where the a may have any of the fol lowing forms. k 
Case I a = bkQ + c + 
Case I1 

C a s e  III 

k k d k  
ak = bk@ -t ckP i $%p + f$ 

ak = b k2 CY2+ bkl"+%clfl if. cklP fck2P2+% 

(2)  

C1$ n-l  Case IV ak = b 8 - k  bk(n-l)O! i-... \(n-L) kn 

- -_I- ---- 
* The rczsarch repor ted  h e r e i n  viis sugipoi:t&. 9n p r t  by thc 
N a  tio;;zl Aeronautics anc! Space Adininis trc?.tion ander  the g r a n t  
NO. NGR 0 5 --.C! 1 7  -0 10. 



k=O 

k = O  

which leads to 

k=O 

For a of the f o r m s  def ined  as Case I and case I1 i n  E q .  -(9) 
rearrange t o  k 

Case I aRl $. PC, f D1 = 0 

IYB2 

( ?. 0 :! } 

I- 8Cz + D2 = 0 



v;'ricTe L i s  a cons t an t ,  then the re  e x i s t s  on the &, 6 plane a 
3.occs of p o i n t s  d e f i n i n g  p , ,  CGS. T h u s  f o r  the s i n g u l a r  case 
t212re a r e  an i n f i n i t e  number of  (C%,F) p a i r s  which provide the  
sz~nc p a i r  of complex r o o t s ,  If the  s i n g u l a r  case  exists, and 
if thc: a v a i l a b l e  r o o t  p a i r s  c s , b t  a r e  s u i t a b l e  f o r  domir ia~t  
roo:: design, then the  s h g u l a r  l i n e s  a r e  added t o  the us:ial 
paramctter p lane  plot and by in spec t ion  of t he  plot a scgrncnt 
of the s i n g u l a r  l i n e  i s  loca ted  such t h a t  t he  des i r ed  do:i!i- 
nnnc:e condi t ion  e x i s t s .  (Xote t h a t  i n  s p e c i f i c  cases domi.- 
nance  m y  no t  o b t a i n ) .  

0s 

Son!? System Exhib i t inq  S ingular  - _----̂ - L i n e s  __- - 
The usua l ,  s i n p l e ,  feedback c o n t r o l  loop does not  provide 

s i n g u l a r  l i n e  c h a r a c t e r i s t i c s  a s  funct.ions of norma l ly  a c ? j u s t -  
a b l e  parameters. From E q .  10, 11, 1 2 ,  i t  is  seen tha'i a %.ii:j.- 
n\Liiii O f  three simultaneous equat ions niust be s a t i s f i e d  a f L C ! r  
parsmekcrs U and fl have been chosen, thus a system m u s t  cor:- 
taj.ri a m i n i m u m  of  f i v e  parameters t o  make the s ingu la r  c::sE 
poss ib le .  Experience su.ggests t h a t  more than f i v e  paranckcrs 
arc des i r ab le ,  
s a r y ,  and t h a t  t he  e x i s t e n c e  of s u i t a b l e  s ingu la r  l i n e s  !naif 
dcpc!id on the  numerical value of any non-adjustable pI.L?:ik pa- 
xarne 'iecrs . 

t h a t  a jud ic ious  s e l e c t i o n  of O! and /3 i s  neccs- 



- - a.nd for Gl = G2 Gc2 - Gc - 
S 

incl~idi3ls  

t h e r  quan t i  tic$; 

as previously defined,* the  parameter p lane  diagram is  sf107..:11 03 
Fig. 3 ,  inc luding  s i n g u l a r  l i n e s .  

~ a s i c  Concept of Self-Adaptation -----------'L.---.--" Usina S inqular  --___ Lines. -_-- 

on t h e  (2 -F  parameter p lane ,  

-___ _̂...----- ---.-- 

Consider Fig.  4 ,  which shows one s i n g u l a r  l i n e  f o r  p = 
5 and q, = 

p lan t  parameter and a i s  an a d j u s t a b l e  parameter i n  the con- 
t ro J l c r .1n i t i a l  ope ra t ion  i s  on &&e s i n g u l a r  l i n e  a t  p o i n t  Fi I. so t h a t  cS,qls d e f i n e  dorninant roots. 
Ap t h i s  change i n  the parameter must be i d e n t i f i e d  using a!iy 
sui. table scheme. The a d j u s t a b l e  parameter,  Iy, i s  changed a n  
amount kt, r e t u r n i n g  the system to  ope ra t ion  on the s i n g u l a r  
l i n e  a t  p o i n t  PI2. ?'?!e 
other c h a r a c t e r r s  t i c  r o o t s  a r e  changed, b u t  f o r  rcaso:iahlc 
ranges of CV and ,8 dominance i s  r e t a i n e d  by the roots a t  c S , k h s .  

@ i s  the  varyi;:g 

When ,8 v a r i e s  FIR ai:ioiq1t; 

The system again  has r o o t  at; %s,k;s.  

- A Specj-fic -- Case ---.- of ___--___ Self-Ac?aptati&. 

i s  dns i red  t o  inco rpora t e  t h i s  p l a n t  i n  a c losed  loop s y s k r a  
and dominant r o o t s  at -- 0.5, u! =; 4 are spec i f i ed .  S i n c e  the 
p l a n t  pole is variable, se l f  adap ta t ion  is  planned and Lk:;'o s c z -  
t i o n s  of compensation a r e  i n s e r t e d  t o  provide s u i t a b l e  parcirne- 
ters for  ob ta in ing  s i n g u l a r  l i n e s ,  anti one of the zeros is C?C- 
s i y n a t e d  as a .  

Fig. 5a shosvs a f i r s t  o rde r  p l a n t  wi th  va r i ab le  pole.  I t  

The c h a r a c t e r i s t i c  equat ion i s  



Subs t i . tu t ing  10, = 
equat ions  i n  \ \ X I  

p1 = 2 * 0 ;  p2 

The eciuatj-on 

4 and 8 = 120° ( f o r  4 = %) w e  ob ta in  t h r e e  
Chobsing p = 2.0 and so lv ing:  P I ,  P2z-  1 

= -1.465; KK1 3.47; z = 5.464 
' 

of t h e  s i n g u l a r  line becomes 

c Y - p = o  
From Equation 16  t h e  s i n g u l a r  l i n e  r e q u i r e s  pole-zero can- 

c e l l a t i o n ,  which i s  a t r i v i a l  case . '  To show t h a t  the  s y s t e m .  
does sei€-adapt t h e  scheme of  Fig.  5a was used. (Note: The 
i d e n t i f i c a t i o n  method was develope g b17 s. R. Parker  and R. 
Desros ie rs ,  and i s  t o  be publ i shed , )  Fig.  5b shows the  e f f e c t -  
iveness  of  t he  se l f  adapta t ion .  

The system of Fig. 5 i s  Type Zero. A s l i g h t  modi f ica t ion  
i n  design permi ts  conversion t o  Type 1. P l a n t  block diagram and 
responses a r e  shown i n  Fig. 6 ,  

Fig. 8 shows adapt ive  compensation for  a v a r i a b l e  pole 
us ing  v e l o c i t y  feedback. This works f o r  e i t h e r  dominant complex 
r o o t s  o r  a domi-nant r e a l  r o o t  as shown on Fig .  8. 

- Conclusions: A new concept  i n  s e l f - a d a p t i v s  adjustment h a s  been 
presented  -- use of s i n g u l a r  l i n e s  on t h e  parameter p lane  to 
provide a convenient  a d j u s t a b l e  v a r i a b l e .  An example h a s  shown 
t h a t  the des ign  ideas  a r e  f e a s i b l e  and s imula t ion  demonstrates 
t h a t  t he  method works. 
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~n many a p p l i c a t i o n s ,  p a r t i c u l a r l ' y  i n  process  cont-.rol s y s -  
tems, an overdarriped response i s  requi red ,  i .e. , it is des i red. 
t h a t  a real  root be d.om.inant. On t h e  parameter plane,  f o r  a 
system s p e c i f i e d  by E q .  (1) and Case 3: of E q .  (21, a real  r o ~ t  i s  
def ined  by a s t r a i g h t  l ine .  (Note t h a t  s u b s t i t u t i o n  of s = - C r ! j O  
i n t o  E q . ( l )  when the ak are  
Case I l eads  t o  

k = O  ' k=O k = O  

and Eq.  (19) is t h e  equation of a s t r a i g h t  l i n e  on the c i . -~pl ; t?~~. )  
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