6 research outputs found

    Development And Characterization Of Biofilms Based On Amaranth Flour (amaranthus Caudatus)

    No full text
    The aim of the present paper was to study the filmogenic capacity of Amaranth flour. The films were obtained in a casting process using glycerol as plasticizer. The influence of the glycerol content, pH, temperature of heating process and drying temperature and relative humidity on mechanical and barrier properties were evaluated. The effect of these variables was analyzed according a 2(5-1) fractional experimental design that allowed the selection of significant factors: glycerol content, pH and process temperature. These then were used in a full factorial design. Solubility and mechanical properties were measured to obtain the optimal processing variables and casting solution formulation. The biofilms presented a yellowish color, moderate opacity, and high flexibility but low tensile strength. Nevertheless they showed less oxygen and water permeability than other protein and polysaccharide films. © 2004 Elsevier Ltd. All rights reserved.671-2215223(1997) Official Methods of Analysis (16th Ed.), , Washington: Association of Official Analytical ChemistsArvanitoyannis, I., Nakayama, A., Aiba, S., Edible films made from hydroxipropyl starch and gelatin and plasticized by polyols and water (1998) Carbohydrate Polymer, 36, pp. 105-119Arvanitoyannis, I., Psomiadou, E., Nakayama, A., Edible films made from sodium caseinate, starch, sugars or glycerol. Part. 1 (1996) Carbohydrate Polymer, 31, pp. 179-192Arvanitoyannis, I., Psomiadou, E., Nakayama, A., Yamamoto, N., Edible films made from gelatin, soluble starch and polyols, Part. 3 (1997) Food Chemistry, 60, pp. 593-604(1995) Annual Book of ASTM Standards, , Philadelphia: American Society for Testing and MaterialsAvanza, V., Puppo, C., Añon, C., Rheological properties of Amaranth protein gels (2003) Proceeding of 3th International Symposium of Food Rheology and Structure, , ZurichGarcía, M.A., Martino, M.N., Zaritzky, N., Lipid addition to improve barrier properties of edible starch-based films and coatings (2000) Food Chemistry and Toxicology, 65 (6), pp. 941-947Gennadios, A., McHugh, T.H., Weller, C.L., Krochta, J.M., Edible coatings and films based on proteins (1994) Edible Coatings and Films to Improve Food Quality, pp. 210-278. , J. M. Krochta E. A. Baldwin & M. Nisperos-Carriedo (Eds.). Lancaster: Technomic Publishing Company IncGennadios, A., Weller, C.L., Hanna, M.A., Froning, G.W., Mechanical and barrier properties of egg albumen films (1996) Journal of Food Science, 61, pp. 585-589Gontard, N., Duchez, C., Cuq, J.L., Guilbert, S., Edible composite films of wheat gluten and lipids-water-vapor permeability and other physical properties (1994) International Journal of Food Science and Technology, 29 (1), pp. 39-50Gontard, N., Guilbert, S., Cuq, J.L., Edible wheat gluten films: Influence of the main process variables on film properties using response surface methodology (1992) Journal of Food Science, 57 (1), pp. 190-195Iwata, K., Ishizaki, S., Handa, A., Tanaka, M., Preparation and characterization of edible films from fish water-soluble proteins (2000) Fisheries Science, 66, pp. 372-378Juliano, B.O., A simplified assay for milled-rice amylose (1971) Cereal Science Today, 6, pp. 334-340Lourdin, D., Della Valle, G., Colonna, P., Influence of amylose content on starch films and foams (1995) Carbohydrate Polymers, 27, pp. 261-270Mali, S., Grossmann, V., Garcia, M.A., Martino, M., Zaritzky, N.E., Microstructural characterization of yam starch film (2002) Carbohydrate Polymers, 50 (4), pp. 379-386Mariniello, L., Pierro, P., Esposito, C., Sorrentino, A., Masi, P., Porta, R., Preparation and mechanical properties of edible pectin-soy flour films obtained in the absence or presence of transglutaminase (2003) Journal of Biotechnology, 102 (2), pp. 191-198Martínez, N., Añón, C., Composition and structural characterization of Amaranth protein isolates. An electrophoretic and calorimetric study (1996) Journal of Agricultural and Food Chemistry, 44, pp. 2523-2530Martínez, C., Cuevas, F., (1989) Evaluación de la Calidad Culinaria y Molinaria del Arroz, p. 75. , Guía de estudio. Cali, CIATMcHugh, T.H., Krochta, J.M., Sorbitol vs glycerol plasticized whey protein edible films: Integrated oxygen permeability and tensile property evaluation (1994) Journal of Agricultural and Food Chemistry, 42 (4), pp. 841-845Myllärinen, P., Buleon, A., Lahtinen, R., Forssell, P., The crystallinity of amylose and amylopectin films (2002) Carbohydrate Polymers, 48, pp. 41-48Myllärinen, P., Partanen, R., Seppälä, J., Forssell, P., Effect of glycerol on behaviour of amylose and amylopectin films (2002) Carbohydrate Polymers, 50 (4), pp. 355-361Nisperos-Carriedo, M.O., Edible coatings and films based on polysaccharides (1994) Edible Coatings and Films to Improve Food Quality, pp. 305-335. , J. M. Krochta E. A. Baldwin & M. O. Nisperos-Carriedo (Eds.). Lancaster: Technomic Publishing Company IncOllett, A.L., Parker, R., Smith, A.C., Deformation and fracture behavior of wheat starch plasticized with glucose and water (1991) Journal of Material Science, 26, pp. 1351-1356Otey, F., Westoff, R.P., Doane, W.M., Starch based blown films (1980) Industrial Engineering Chemistry, 19, pp. 592-598Pampa, N.Q., (2003) Rheological Behavior of Amaranth Starch: Stationary and Oscillatory Test, , Magister thesis, Unicamp, BrazilParris, N., Dickey, L., Kurantz, M.J., Moten, R.O., Craig, J.C., Water vapor permeability and solubility of Zein/starch hydrophilic films prepared from dry milled corn extract (1997) Journal of Food Engineering, 32, pp. 199-207Pereira, L., (2003) Influence of Salt and Sugar on Rheological Properties of Amaranth Starch Suspensions, , Magister thesis, Unicamp, BrazilPerez, E., Bahnassey, Y.A., Breene, W.M., A simple laboratory scale method for isolation of Amaranth starch (1993) Starch/Stärke, 45, pp. 211-214Perez-Gago, M.B., Krochta, J.M., Denaturation time and temperature effects on solubility, tensile properties, and oxygen permeability of whey protein edible films (2001) Journal of Food Science, 66, pp. 705-710Rayas, L.M., Hernández, R.J., Development and characterization of biodegradable/edible wheat protein films (1997) Journal of Food Science, 62 (1), pp. 160-164Rindlav-Wetsling, A., Standing, M., Hermansson, A., Gatenholm, P., Structure, mechanical and barrier properties of amylose and amylopectin films (1998) Carbohydrate Polymers, 36, pp. 217-224Saunders, R.M., Becker, R., Amaranthus: A potential food and feed resource (1984) Advances Cereal Science and Technology, 6, pp. 357-396Shaw, N.D., Monahan, F.J., O'Riordand, E.D., Sullivan, M., Effect of soya oil and glycerol on physical properties of composite WPI films (2002) Journal of Food Engineering, 51, pp. 299-304Sobral, P.J.A., Propriedades funcionais de biofilmes de gelatina em função da espessura (1999) Ciência & Engenharia, 8 (1), pp. 60-67Souza, S.M.A., (2001) Development and Characterization of Edible Films Based on Bovine Myofibrillar Protein, , Ph.D. thesis. Food Engineering School, State University of Campinas (Unicamp), BrazilTapia-Blácido, D., (2003) Preparation and Characterization of Amaranth Flour Biofilms, , Magister thesis, Unicamp, BrazilTorres, J.A., Edible films and coatings from proteins (1994) Protein Functionality in Food Systems, pp. 467-507. , N. S. Hettiarachchy & G. R. Ziegler (Eds.). New York: Marcel Dekker IncVicentini, N.M., Sobral, P.J.A., Cereda, M.P., The influence of the thickness on the functional properties of cassava starch edible films (2002) Plant Biopolymer Science: Food and Non-food Applications, pp. 291-300. , D. Renard G. Della Valle & Y. Popineau (Eds.). Cambridge: Royal Society of ChemistryVicentini, N.M., Sobral, P.J.A., Cereda, M.P., Influence of gelatinization temperature over optical and mechanical properties of cassava starch edible films (2003) Ingenieria de Alimentos: Procesado de Alimentos, 5, pp. 215-22

    Optimization of amaranth flour films plasticized with glycerol and sorbitol by multi-response analysis

    No full text
    The optimal formulation for the preparation of amaranth flour films plasticized with glycerol and sorbitol was obtained by a multi-response analysis. The optimization aimed to achieve films with higher resistance to break, moderate elongation and lower solubility in water. The influence of plasticizer concentration (Cg, glycerol or Cs, sorbitol) and process temperature (Tp) on the mechanical properties and solubility of the amaranth flour films was initially studied by response surface methodology (RSM). The optimized conditions obtained were Cg 20.02 g glycerol/100 g flour and Tp 75 degrees C, and Cs 29.6 g sorbitol/100 g flour and Tp 75 degrees C. Characterization of the films prepared with these formulations revealed that the optimization methodology employed in this work was satisfactory. Sorbitol was the most suitable plasticizer. It furnished amaranth flour films that were more resistant to break and less permeable to oxygen, due to its greater miscibility with the biopolymers present in the flour and its lower affinity for water. (C) 2011 Elsevier Ltd. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Sao Paulo Research Support Foundation -FAPESP

    Effects of drying conditions on some physical properties of soy protein films

    Get PDF
    The influence of drying conditions (air temperature and relative humidity) on mechanical properties, solubility in water, and color of two kinds of soy protein isolate film: a commercial one (CSPI) and other obtained under laboratory conditions (LSPI) were evaluated using the response surface methodology (RSM). Soy protein films were prepared by casting using glycerol as plasticizer. The films were dried in a chamber with air circulation under controlled conditions of relative humidity (24%, 30%, 45%, 60%, 66%) and air temperature (34, 40, 55, 70, 76 _C). It was verified that mechanical properties of films made from LSPI and CSPI are influenced in a very different way by the drying conditions due to a diverse initial protein conformation in both materials, as was revealed by DSC and SDS–Page studies. The solubility of the LSPI film was affected by temperature and relative humidity, being lowest (_50%) for films obtained at high RH and temperatures ranging from 45 to 76 _C. For CSPI films, in contrast, solubility did not depend on the drying process and it remained relatively constant (_40%). The optimal drying conditions determined by RSM were: 70 _C and 30% RH for CSPI films and 60 _C and 60% RH for LSPI films. Dried under these conditions, CSPI films presented a higher tensile strength, lower elongation at break, lower solubility and better water and oxygen permeability than LSPI ones.Fil: Denavi, Gabriela Alejandra. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Tapia Blacido, D. R.. Universidade Estadual de Campinas; BrasilFil: Añon, Maria Cristina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Sobral, P. J. A.. Universidade de Sao Paulo; BrasilFil: Mauri, Adriana Noemi. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Menegalli, F. C.. Universidade Estadual de Campinas; Brasi

    Synthesis of Antibacterial Hybrid Hydroxyapatite/Collagen/ Polysaccharide Bioactive Membranes and Their Effect on Osteoblast Culture

    No full text
    Inspired by the composition and confined environment provided by collagen fibrils during bone formation, this study aimed to compare two different strategies to synthesize bioactive hybrid membranes and to assess the role the organic matrix plays as physical confinement during mineral phase deposition. The hybrid membranes were prepared by (1) incorporating calcium phosphate in a biopolymeric membrane for in situ hydroxyapatite (HAp) precipitation in the interstices of the biopolymeric membrane as a confined environment (Methodology 1) or (2) adding synthetic HAp nanoparticles (SHAp) to the freshly prepared biopolymeric membrane (Methodology 2). The biopolymeric membranes were based on hydrolyzed collagen (HC) and chitosan (Cht) or kappa-carrageenan (kappa-carr). The hybrid membranes presented homogeneous and continuous dispersion of the mineral particles embedded in the biopolymeric membrane interstices and enhanced mechanical properties. The importance of the confined spaces in biomineralization was confirmed by controlled biomimetic HAp precipitation via Methodology 1. HAp precipitation after immersion in simulated body fluid attested that the hybrid membranes were bioactive. Hybrid membranes containing Cht were not toxic to the osteoblasts. Hybrid membranes added with silver nanoparticles (AgNPs) displayed antibacterial action against different clinically important pathogenic microorganisms. Overall, these results open simple and promising pathways to develop a new generation of bioactive hybrid membranes with controllable degradation rates and antimicrobial properties

    Films Based on Biopolymer from Conventional and Non-Conventional Sources.

    No full text
    Food Engineering: Integrated Approaches presents an up-to-date review of important food engineering concepts, issues and recent advances in the field. Distinguished food engineers and food scientists from key institutions worldwide have contributed chapters that provide a deep analysis of their particular subjects. At the same time, each topic is framed within the context of a broader more integrated approach, demonstrating its relationship and interconnectedness to other areas. The premise of this work, therefore, is to offer both a comprehensive understanding of food engineering as a whole and a thorough knowledge of individual subjects. This approach appropriately conveys the basic fundamentals, state-of-the-art technology, and applications of the involved disciplines, and further encourages scientific collaboration among researchers. This book is mainly directed to academics, and to undergraduate and postgraduate students in food engineering, food science and food technology. Scholars will find a selection of innovative topics ranging from bubbles in food and transport phenomena in food systems to practical food processing applications at the industrial level. Professionals working in food research centers and food industries may also find this book useful.Fil: Sobral, Pablo Antonio. Universidade de São Paulo; BrasilFil: Alvarado, J.D.. Universidad Técnica de Ambato; MéxicoFil: Zaritzky, Noemi Elisabet. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Universidad Nacional de La Plata. Facultad de Ingenierí­a. Departamento de Ingeniería Química; ArgentinaFil: Laurindo, J.B.. Universidade Federal de Santa Catarina; BrasilFil: Gómez Guillén, C.. Consejo Superior de Investigaciones Científicas; EspañaFil: Añon, Maria Cristina. Universidad Nacional de La Plata. Facultad de Ingenierí­a. Departamento de Ingeniería Química; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Montero, P.. Consejo Superior de Investigaciones Científicas; EspañaFil: Denavi, Gabriela Alejandra. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Molina Ortiz, Sara Eugenia. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Mauri, Adriana Noemi. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Pinotti, Adriana Noemi. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; Argentina. Universidad Nacional de La Plata. Facultad de Ingenierí­a. Departamento de Ingeniería Química; ArgentinaFil: Garcia, Maria Alejandra. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Martino, Miriam Nora. Universidad Nacional de La Plata. Facultad de Ingenierí­a. Departamento de Ingeniería Química; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Investigación y Desarrollo en Criotecnología de Alimentos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Centro de Investigación y Desarrollo en Criotecnología de Alimentos; ArgentinaFil: Carvalho, R.A.. Universidade de São Paulo; Brasi
    corecore