194 research outputs found

    A Thermodynamically-Based Mesh Objective Work Potential Theory for Predicting Intralaminar Progressive Damage and Failure in Fiber-Reinforced Laminates

    Get PDF
    A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Damage is considered to be the effect of any structural changes in a material that manifest as pre-peak non-linearity in the stress versus strain response. Conversely, failure is taken to be the effect of the evolution of any mechanisms that results in post-peak strain softening. It is assumed that matrix microdamage is the dominant damage mechanism in continuous fiber-reinforced polymer matrix laminates, and its evolution is controlled with a single ISV. Three additional ISVs are introduced to account for failure due to mode I transverse cracking, mode II transverse cracking, and mode I axial failure. Typically, failure evolution (i.e., post-peak strain softening) results in pathologically mesh dependent solutions within a finite element method (FEM) setting. Therefore, consistent character element lengths are introduced into the formulation of the evolution of the three failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs is derived. The theory is implemented into commercial FEM software. Objectivity of total energy dissipated during the failure process, with regards to refinements in the FEM mesh, is demonstrated. The model is also verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared to the experiments

    Wave interaction with defects in pressurised composite structures

    Get PDF
    There exists a great variety of structural failure modes which must be frequently inspected to ensure continuous structural integrity of composite structures. This work presents a Finite Element (FE) based method for calculating wave interaction with damage within structures of arbitrary layering and geometric complexity. The principal novelty is the investigation of pre-stress effect on wave propagation and scattering in layered structures. A Wave Finite Element (WFE) method, which combines FE analysis with periodic structure theory (PST), is used to predict the wave propagation properties along periodic waveguides of the structural system. This is then coupled to the full FE model of a coupling joint within which structural damage is modelled, in order to quantify wave interaction coeffcients through the joint. Pre-stress impact is quantified by comparison of results under pressurised and non-pressurised scenarios. The results show that including these pressurisation effects in calculations is essential. This is of specific relevance to aircraft structures being intensely pressurised while on air. Numerical case studies are exhibited for different forms of damage type. The exhibited results are validated against available analytical and experimental results

    Computational Implementation of a Thermodynamically Based Work Potential Model For Progressive Microdamage and Transverse Cracking in Fiber-Reinforced Laminates

    Get PDF
    A continuum-level, dual internal state variable, thermodynamically based, work potential model, Schapery Theory, is used capture the effects of two matrix damage mechanisms in a fiber-reinforced laminated composite: microdamage and transverse cracking. Matrix microdamage accrues primarily in the form of shear microcracks between the fibers of the composite. Whereas, larger transverse matrix cracks typically span the thickness of a lamina and run parallel to the fibers. Schapery Theory uses the energy potential required to advance structural changes, associated with the damage mechanisms, to govern damage growth through a set of internal state variables. These state variables are used to quantify the stiffness degradation resulting from damage growth. The transverse and shear stiffness of the lamina are related to the internal state variables through a set of measurable damage functions. Additionally, the damage variables for a given strain state can be calculated from a set of evolution equations. These evolution equations and damage functions are implemented into the finite element method and used to govern the constitutive response of the material points in the model. Additionally, an axial failure criterion is included in the model. The response of a center-notched, buffer strip-stiffened panel subjected to uniaxial tension is investigated and results are compared to experiment

    A novel approach to modelling water transport and drug diffusion through the stratum corneum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The potential of using skin as an alternative path for systemically administering active drugs has attracted considerable interest, since the creation of novel drugs capable of diffusing through the skin would provide a great step towards easily applicable -and more humane- therapeutic solutions. However, for drugs to be able to diffuse, they necessarily have to cross a permeability barrier: the <it>stratum corneum </it>(SC), the uppermost set of skin layers. The precise mechanism by which drugs penetrate the skin is generally thought to be diffusion of molecules through this set of layers following a "tortuous pathway" around corneocytes, i.e. impermeable dead cells.</p> <p>Results</p> <p>In this work, we simulate water transport and drug diffusion using a three-dimensional porous media model. Our numerical simulations show that diffusion takes place through the SC regardless of the direction and magnitude of the fluid pressure gradient, while the magnitude of the concentrations calculated are consistent with experimental studies.</p> <p>Conclusions</p> <p>Our results support the possibility for designing arbitrary drugs capable of diffusing through the skin, the time-delivery of which is solely restricted by their diffusion and solubility properties.</p

    Is the Rule of Law an Antidote for Religious Tension? The Promise and Peril of Judicializing Religious Freedom

    Get PDF
    Although “rule of law” is often regarded as a solution for religious conflict, this article analyzes the role of legal processes and institutions in hardening boundaries and sharpening antagonisms among religious communities. Using case studies from Sri Lanka, India, Malaysia, and Pakistan, we highlight four specific mechanisms through which legal procedures, structures, and instruments can further polarize already existing religious conflicts. These mechanisms include the procedural requirements and choreography of litigation (Sri Lanka), the strategic use of legal language and court judgments by political and socioreligious groups (India), the activities of partisan activists who mobilize around litigation (Malaysia), and the exploitation of “public order” laws in contexts framed by antagonism targeting religious minorities (Pakistan)

    Control of self-assembly in micro- and nano-scale systems

    Full text link
    Control of self-assembling systems at the micro- and nano-scale provides new opportunities for the engineering of novel materials in a bottom-up fashion. These systems have several challenges associated with control including high-dimensional and stochastic nonlinear dynamics, limited sensors for real-time measurements, limited actuation for control, and kinetic trapping of the system in undesirable configurations. Three main strategies for addressing these challenges are described, which include particle design (active self-assembly), open-loop control, and closed-loop (feedback) control. The strategies are illustrated using a variety of examples such as the design of patchy and Janus particles, the toggling of magnetic fields to induce the crystallization of paramagnetic colloids, and high-throughput crystallization of organic compounds in nanoliter droplets. An outlook of the future research directions and the necessary technological advancements for control of micro- and nano-scale self-assembly is provided
    corecore