7,086 research outputs found
Solvated dissipative electro-elastic network model of hydrated proteins
Elastic netwok models coarse grain proteins into a network of residue beads
connected by springs. We add dissipative dynamics to this mechanical system by
applying overdamped Langevin equations of motion to normal-mode vibrations of
the network. In addition, the network is made heterogeneous and softened at the
protein surface by accounting for hydration of the ionized residues. Solvation
changes the network Hessian in two ways. Diagonal solvation terms soften the
spring constants and off-diagonal dipole-dipole terms correlate displacements
of the ionized residues. The model is used to formulate the response functions
of the electrostatic potential and electric field appearing in theories of
redox reactions and spectroscopy. We also formulate the dielectric response of
the protein and find that solvation of the surface ionized residues leads to a
slow relaxation peak in the dielectric loss spectrum, about two orders of
magnitude slower than the main peak of protein relaxation. Finally, the
solvated network is used to formulate the allosteric response of the protein to
ion binding. The global thermodynamics of ion binding is not strongly affected
by the network solvation, but it dramatically enhances conformational changes
in response to placing a charge at the active site of the protein
Terahertz response of dipolar impurities in polar liquids: On anomalous dielectric absorption of protein solutions
A theory of radiation absorption by dielectric mixtures is presented. The
coarse-grained formulation is based on the wavevector-dependent correlation
functions of molecular dipoles of the host polar liquid and a density-density
structure factor of the positions of the solutes. A nonlinear dependence of the
absorption coefficient on the solute concentration is predicted and originates
from the mutual polarization of the liquid surrounding the solutes by the
collective field of the solute dipoles aligned along the radiation field. The
theory is applied to terahertz absorption of hydrated saccharides and proteins.
While the theory gives an excellent account of the observations for saccharides
without additional assumptions and fitting parameters, experimental absorption
coefficient of protein solutions significantly exceeds theoretical calculations
within standard dielectric models and shows a peak against the protein
concentration. A substantial polarization of protein's hydration shell is
required to explain the differences between standard theories and experiment.
When the correlation function of the total dipole moment of the protein with
its hydration shell from numerical simulations is used in the present
analytical model an absorption peak similar to that seen is experiment is
obtained. The result is sensitive to the specifics of protein-protein
interactions in solution. Numerical testing of the theory requires the
combination of terahertz dielectric and small-angle scattering measurements.Comment: 11 p
Pressure-temperature Phase Diagram of Polycrystalline UCoGe Studied by Resistivity Measurement
Recently, coexistence of ferromagnetism (T_Curie = 2.8K) and
superconductivity (T_sc = 0.8K) has been reported in UCoGe, a compound close to
a ferromagnetic instability at ambient pressure P. Here we present resistivity
measurements under pressure on a UCoGe polycrystal. The phase diagram obtained
from resistivity measurements on a polycrystalline sample is found to be
qualitatively different to those of all other ferromagnetic superconductors. By
applying high pressure, ferromagnetism is suppressed at a rate of 1.4 K/GPa. No
indication of ferromagnetic order has been observed above P ~ 1GPa. The
resistive superconducting transition is, however, quite stable in temperature
and persists up to the highest measured pressure of about 2.4GPa.
Superconductivity would therefore appear also in the paramagnetic phase.
However, the appearance of superconductivity seems to change at a
characteristic pressure P* ~ 0.8GPa. Close to a ferromagnetic instability, the
homogeneity of the sample can influence strongly the electronic and magnetic
properties and therefore bulk phase transitions may differ from the
determination by resistivity measurements.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp
On the principal bifurcation branch of a third order nonlinear long-wave equation
We study the principal bifurcation curve of a third order equation which
describes the nonlinear evolution of several systems with a long--wavelength
instability. We show that the main bifurcation branch can be derived from a
variational principle. This allows to obtain a close estimate of the complete
branch. In particular, when the bifurcation is subcritical, the large amplitude
stable branch can be found in a simple manner.Comment: 11 pages, 3 figure
Phonon dispersion and electron-phonon interaction in peanut-shaped fullerene polymers
We reveal that the periodic radius modulation peculiar to one-dimensional
(1D) peanut-shaped fullerene (C) polymers exerts a strong influence on
their low-frequency phonon states and their interactions with mobile electrons.
The continuum approximation is employed to show the zone-folding of phonon
dispersion curves, which leads to fast relaxation of a radial breathing mode in
the 1D C polymers. We also formulate the electron-phonon interaction
along the deformation potential theory, demonstrating that only a few set of
electron and phonon modes yields a significant magnitude of the interaction
relevant to the low-temperature physics of the system. The latter finding gives
an important implication for the possible Peierls instability of the C
polymers suggested in the earlier experiment.Comment: 9 pages, 8 figure
Quantum Tricritical Points in NbFe
Quantum critical points (QCPs) emerge when a 2nd order phase transition is
suppressed to zero temperature. In metals the quantum fluctuations at such a
QCP can give rise to new phases including unconventional superconductivity.
Whereas antiferromagnetic QCPs have been studied in considerable detail
ferromagnetic (FM) QCPs are much harder to access. In almost all metals FM QCPs
are avoided through either a change to 1st order transitions or through an
intervening spin-density-wave (SDW) phase. Here, we study the prototype of the
second case, NbFe. We demonstrate that the phase diagram can be modelled
using a two-order-parameter theory in which the putative FM QCP is buried
within a SDW phase. We establish the presence of quantum tricritical points
(QTCPs) at which both the uniform and finite susceptibility diverge. The
universal nature of our model suggests that such QTCPs arise naturally from the
interplay between SDW and FM order and exist generally near a buried FM QCP of
this type. Our results promote NbFe as the first example of a QTCP, which
has been proposed as a key concept in a range of narrow-band metals, including
the prominent heavy-fermion compound YbRhSi.Comment: 21 pages including S
Instantons in N=1/2 Super Yang-Mills Theory via Deformed Super ADHM Construction
We study an extension of the ADHM construction to give deformed
anti-self-dual (ASD) instantons in N=1/2 super Yang-Mills theory with U(n)
gauge group. First we extend the exterior algebra on superspace to
non(anti)commutative superspace and show that the N=1/2 super Yang-Mills theory
can be reformulated in a geometrical way. By using this exterior algebra, we
formulate a non(anti)commutative version of the super ADHM construction and
show that the curvature two-form superfields obtained by our construction do
satisfy the deformed ASD equations and thus we establish the deformed super
ADHM construction. We also show that the known deformed U(2) one instanton
solution is obtained by this construction.Comment: 32 pages, LaTeX, v2: typos corrected, references adde
Structural evolution in the neutron-rich nuclei 106Zr and 108Zr
The low-lying states in 106Zr and 108Zr have been investigated by means of
{\beta}-{\gamma} and isomer spectroscopy at the RI beam factory, respectively.
A new isomer with a half-life of 620\pm150 ns has been identified in 108Zr. For
the sequence of even-even Zr isotopes, the excitation energies of the first 2+
states reach a minimum at N = 64 and gradually increase as the neutron number
increases up to N = 68, suggesting a deformed sub-shell closure at N = 64. The
deformed ground state of 108Zr indicates that a spherical sub-shell gap
predicted at N = 70 is not large enough to change the ground state of 108Zr to
the spherical shape. The possibility of a tetrahedral shape isomer in 108Zr is
also discussed.Comment: 10 pages, 3 figures, Accepted for publication in Phys. Rev. Let
- …
