428 research outputs found

    Quercetins, Chlorogenic Acids and Their Colon Metabolites Inhibit Colon Cancer Cell Proliferation at Physiologically Relevant Concentrations

    Get PDF
    Several studies have suggested that a phenolic-rich diet may be protective against colon cancer. Most phenolic compounds are not absorbed in the small intestine and reach the colon where they are metabolized by gut microbiota in simple phenolic acids. In this study, the anti-proliferative activity of quercetins, chlorogenic acids, their colon metabolites and mixtures of parent compounds/metabolites was assessed by using two colon cancer cell lines (Caco-2 and SW480) at physiologically relevant concentrations. Chlorogenic acids, quercetin and the metabolite 3-(3 & PRIME;,4 & PRIME;-dihydroxyphenyl)acetic acid exerted remarkable anti-proliferative activity against Caco-2, whereas quercetin derivatives and metabolites were the most active against SW480. Tested compounds arrested the cell cycle at the S phase in both the cell lines. The mixtures of parent compounds/metabolites, which mimic the colon human metabotypes that slowly or rapidly metabolize the parent compounds, similarly inhibited cell growth. SW480 cells metabolized parent phenolic compounds more rapidly and extensively than Caco-2, whereas colon metabolites were more stable. These results suggest that dietary phenolic compounds exert an anti-proliferative effect against human colon cancer cells that can be further sustained by the colon metabolites. Therefore, gut microbiota metabolism of phenolic compounds may be of paramount importance in explaining the protective effect of phenolic-rich foods against colon cancer

    Application of a Combined Peptidomics and In Silico Approach for the Identification of Novel Dipeptidyl Peptidase-IV-Inhibitory Peptides in In Vitro Digested Pinto Bean Protein Extract

    Get PDF
    The conventional approach in bioactive peptides discovery, which includes extensive bioassay-guided fractionation and purification processes, is tedious, time-consuming and not always successful. The recently developed bioinformatics-driven in silico approach is rapid and cost-effective; however, it lacks an actual physiological significance. In this study a new integrated peptidomics and in silico method, which combines the advantages of the conventional and in silico approaches by using the pool of peptides identified in a food hydrolysate as the starting point for subsequent application of selected bioinformatics tools, has been developed. Pinto bean protein extract was in vitro digested and peptides were identified by peptidomics. The pool of obtained peptides was screened by in silico analysis and structure–activity relationship modelling. Three peptides (SIPR, SAPI and FVPH) were selected as potential inhibitors of the dipeptidyl-peptidase-IV (DPP-IV) enzyme by this integrated approach. In vitro bioactivity assay showed that all three peptides were able to inhibit DPP-IV with the tetra-peptide SAPI showing the highest activity (IC50 = 57.7 µmol/L). Indeed, a new possible characteristic of peptides (i.e., the presence of an S residue at the N-terminus) able to inhibit DPP-IV was proposed

    Effect of Fermentation with Streptococcus thermophilus Strains on In Vitro Gastro-Intestinal Digestion of Whey Protein Concentrates

    Get PDF
    Three Streptococcus thermophilus strains, namely RBC6, RBC20, and RBN16, were proven to release bioactive peptides during whey protein concentrate (WPC) fermentation, resulting in WPC hydrolysates with biological activities. However, these bioactive peptides can break down during gastro-intestinal digestion (GID), hindering the health-promoting effect of fermented WPC hydrolysates in vivo. In this work, the effect of simulated GID on three WPC hydrolysates fermented with S. thermophilus strains, as well as on unfermented WPC was studied in terms of protein hydrolysis, biological activities, and peptidomics profiles, respectively. In general, WPC fermentation enhanced protein hydrolysis compared to unfermented WPC. After in vitro GID, WPC fermented with S. thermophilus RBC20 showed the highest antioxidant activity, whereas WPC fermented with strain RBC06 displayed the highest angiotensin-converting enzyme (ACE)- and dipeptidyl peptidase IV (DPP-IV)-inhibitory activities. Peptidomics analysis revealed that all digested WPC samples were highly similar to each other in peptide profiles, and 85% of the 46 identified bioactive peptides were shared among fermented and unfermented samples. However, semi-quantitative analysis linked the observed differences in biological activities among the samples to differences in the amount of bioactive peptides. The anti-hypertensive peptides VPP and IPP, as well as the DPP-IV-inhibitory peptide APFPE, were quantified. In conclusion, WPC fermentation with S. thermophilus positively impacted protein hydrolysis and bioactive peptide release during GID

    Effect of Ripening and In Vitro Digestion on Bioactive Peptides Profile in Ras Cheese and Their Biological Activities

    Get PDF
    The effect of ripening and in vitro digestion on the biological activities, peptide profiles and release of bioactive peptides in Ras cheese has been investigated. Ras cheese ripening largely influenced the extent of protein hydrolysis. The advancement in ripening resulted in an increase in total peptides (from 0.97 to 2.46 mmol leucine/g in samples at 30 and 180 days of ripening, respectively) and bioactive peptides concentration, especially angiotensin-converting enzyme (ACE)-inhibitory, dipeptidyl-peptidase-IV-(DPP-IV)-inhibitory and antioxidant peptides. In vitro gastro-intestinal digestion further promoted protein hydrolysis and the release of bioactive peptides. Digested Ras cheese at 90 and 180 days of ripening displayed the highest bioactive peptides intensity. The variations in bioactive peptides amount during ripening and in vitro digestion were correlated with the changes in ACE-inhibitory, DPP-IV-inhibitory and antioxidant activities. The highest amounts of VPP and IPP were detected in digested Ras cheese at 90 days of ripening (17.44 and 36.50 mg/kg of cheese, respectively), whereas the highest concentrations of APFPE were found in undigested and digested 180-day ripened Ras cheese (82.09 and 52.01 mg/kg of cheese, respectively). The present investigation underlined potential differences in the biological effect after the ingestion of Ras cheese at different ripening times

    Inhibition of starch hydrolysis during in vitro co-digestion of pasta with phenolic compound-rich vegetable foods

    Get PDF
    The ability of phenolic compounds to inhibit amylolytic enzymes activities has been investigated, suggesting their possible role in type-2 diabetes management. However, these studies have been carried out with purified enzymes and synthetic substrates and are distant from simulating a real physiological situation. The objective of the present research was to evaluate the ability of phenolic-rich vegetable foods to inhibit starch hydrolysis during in vitro co-digestion with pasta resulting in a potential anti-diabetic effect and mimicking as closely as possible a real scenario. Some tested vegetable foods, such as capers, red-skinned onion, red radish, and olives, determined a decrease in starch hydrolysis by 21.5%-31.7% during in vitro co-digestion with pasta. The qualiquantitative phenolic profiles of in vitro co-digested samples were elucidated and selected standard compounds were tested for their ability to inhibit porcine pancreatic alpha-amylase and mammalian alpha-glucosidase. The inhibitory potential of these compounds, especially against alpha-glucosidase, explained the effect observed during co-digestion experiments. The most active phenolic compounds against alpha-glucosidase were quercetin-4'-Oglucoside, quercetin-3-O-rutinoside, luteolin-7-O-glucoside and quercetin-3-O-glucoside-4'-O-glucoside with IC50 values of 20.67, 52.23, 68.84 and 87.58 mu mol/L, respectively. This is the first report suggesting that these compounds are potent inhibitors of mammalian alpha-glucosidase. This study indicates that consuming starchy foods (i.e., pasta) with phenolic-rich vegetable foods may result in an inhibition of starch digestion possibly reducing the post-prandial glucose levels

    Mediterranean diet vegetable foods protect meat lipids from oxidation during in vitro gastro-intestinal digestion

    Get PDF
    Meat lipids oxidation during digestion gives rise to a post-prandial oxidative stress condition, which negatively affects human health. Mediterranean Diet vegetables contain high amount of phenolic compounds, which potentially may reduce the oxidative phenomena during digestion. In vitro co-digestion of turkey meat with a typical Mediterranean Diet salad containing tomato, onion, black olives, extra-virgin olive oil (EVOO) and basil, dose-dependently reduced lipid peroxidation. Onion and EVOO were more effective in limiting oxidation than the other foods, resulting in negligible concentrations of lipid hydroperoxides after digestion. Specific phenolic classes dominated the phenolic profile of the different foods, such as flavonols and anthocyanins in onion, phenolic acids in tomato and basil, and tyrosol-derivatives in black olives and EVOO. The correlation between lipid peroxidation inhibition, phenolic constituents and antioxidant properties was evaluated by principal component analysis (PCA). Flavonols and anthocyanin were the major contributors to the bioactive response of vegetable foods

    Cooking and In Vitro Digestion Modulate the Anti-Diabetic Properties of Red-Skinned Onion and Dark Purple Eggplant Phenolic Compounds

    Get PDF
    The intake of phenolic-rich foods is an emerging preventive approach for the management of type 2 diabetes, thanks to the ability of these compounds to inhibit some key metabolic enzymes. In this study, the influence of cooking and in vitro digestion on the α-glucosidase, α-amylase, and dipeptidyl-peptidase IV (DPP-IV) inhibitory activity of red-skinned onion (RSO) and dark purple eggplant (DPE) phenolic fractions was assessed. The applied cooking procedures had different influences on the total and individual phenolic compounds gastrointestinal bioaccessibility. DPE in vitro digested phenolic fractions displayed no inhibitory activity versus α-amylase and DPP-IV, whereas the fried DPE sample exhibited moderate inhibitory activity against α-glucosidase. This sample mainly contained hydroxycinnamic acid amides that can be responsible for the observed effect. Contrariwise, raw and cooked in vitro digested RSO phenolic fractions inhibited all three enzymes but with different effectiveness. Fried and raw RSO samples were the most active against them. Statistical analysis pointed out that quercetin mono-hexosides (mainly quercetin-4′-O-hexoside) were responsible for the inhibition of α-glucosidase, whereas quercetin dihexosides (mainly quercetin-3-O-hexoside-4′-O-hexoside) were responsible for the DPP-IV-inhibitory activity of RSO samples. An accurate design of the cooking methods could be essential to maximize the release of individual phenolic compounds and the related bioactivities

    Impact of cooking methods of red-skinned onion on metabolic transformation of phenolic compounds and gut microbiota changes

    Get PDF
    Herein, we investigated the stability and bioaccessibility of phenolics in differently cooked red-skinned onion (RSO) and consequently their impact on the gut microbiota and metabolism of phenolics. In fact, the different processes used to cook vegetables can modify and re-arrange the molecular profiles of bioactive compounds, such as phenolics in phenolic-rich vegetables, such as RSO. Fried and grilled RSO were compared to raw RSO and a blank control and subjected to oro-gastro-intestinal digestion and subsequent colonic fermentation. For upper gut digestion, the INFOGEST protocol was used, and for lower gut fermentation, a short-term batch model, namely, MICODE (multi-unit in vitro colon gut model), was employed. During the process, phenolic compound profile (through high-resolution mass spectrometry) and colon microbiomics (qPCR of 14 core taxa) analyses were performed. According to the results, the degradation driven by the colon microbiota of RSO flavonols resulted in the accumulation of three main metabolites, i.e., 3-(3 '-hydroxyphenyl)propanoic acid, 3-(3 '-hydroxyphenyl)acetic acid and 3-(3 ',4 '-dihydroxyphenyl)acetic acid. Also, colonic fermentation of raw onions resulted in a substantial increase in beneficial taxa, which was larger compared to the heat-treated onions, particularly Lactobacillales and beneficial clostridia. Also, a higher level of inhibition of opportunistic bacteria was seen for the raw onion samples, namely, Clostridium perfringens group and Escherichia coli. Thus, our results showed that RSO, and especially the raw one, is an excellent dietary source of flavonols that are strongly metabolized by gut bacteria and can positively modulate the gut microbiota. Although additional in vivo studies are necessary, this work is one of the first to explore how RSO processed with different cooking methods can differently impact the phenolic metabolism and microbiota composition in the large intestine of humans, fine-tuning the antioxidant nature of foods

    Connectivity dynamics from wakefulness to sleep

    Get PDF
    Interest in time-resolved connectivity in fMRI has grown rapidly in recent years. The most widely used technique for studying connectivity changes over time utilizes a sliding windows approach. There has been some debate about the utility of shorter versus longer windows, the use of fixed versus adaptive windows, as well as whether observed resting state dynamics during wakefulness may be predominantly due to changes in sleep state and subject head motion. In this work we use an independent component analysis (ICA)-based pipeline applied to concurrent EEG/fMRI data collected during wakefulness and various sleep stages and show: 1) connectivity states obtained from clustering sliding windowed correlations of resting state functional network time courses well classify the sleep states obtained from EEG data, 2) using shorter sliding windows instead of longer non-overlapping windows improves the ability to capture transition dynamics even at windows as short as 30 ​s, 3) motion appears to be mostly associated with one of the states rather than spread across all of them 4) a fixed tapered sliding window approach outperforms an adaptive dynamic conditional correlation approach, and 5) consistent with prior EEG/fMRI work, we identify evidence of multiple states within the wakeful condition which are able to be classified with high accuracy. Classification of wakeful only states suggest the presence of time-varying changes in connectivity in fMRI data beyond sleep state or motion. Results also inform about advantageous technical choices, and the identification of different clusters within wakefulness that are separable suggest further studies in this direction.Fil: Damaraju, Eswar. Instituto Tecnológico de Georgia; Estados UnidosFil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Laufs, Helmut. Goethe Universitat Frankfurt; AlemaniaFil: Calhoun, Vince D.. Instituto Tecnológico de Georgia; Estados Unido
    corecore