10,500 research outputs found
Resolving the Submillimeter Background: the 850-micron Galaxy Counts
Recent deep blank field submillimeter surveys have revealed a population of
luminous high redshift galaxies that emit most of their energy in the
submillimeter. The results suggest that much of the star formation at high
redshift may be hidden to optical observations. In this paper we present
wide-area 850-micron SCUBA data on the Hawaii Survey Fields SSA13, SSA17, and
SSA22. Combining these new data with our previous deep field data, we establish
the 850-micron galaxy counts from 2 mJy to 10 mJy with a >3-sigma detection
limit. The area coverage is 104 square arcmin to 8 mJy and 7.7 square arcmin to
2.3 mJy. The differential 850-micron counts are well described by the function
n(S)=N_0/(a+S^3.2), where S is the flux in mJy, N_0=3.0 x 10^4 per square
degree per mJy, and a=0.4-1.0 is chosen to match the 850-micron extragalactic
background light. Between 20 to 30 per cent of the 850-micron background
resides in sources brighter than 2 mJy. Using an empirical fit to our >2 mJy
data constrained by the EBL at lower fluxes, we argue that the bulk of the
850-micron extragalactic background light resides in sources with fluxes near 1
mJy. The submillimeter sources are plausible progenitors of the present-day
spheroidal population.Comment: 5 pages, accepted by The Astrophysical Journal Letter
New Measurements of Fine-Scale CMB Polarization Power Spectra from CAPMAP at Both 40 and 90 GHz
We present new measurements of the cosmic microwave background (CMB)
polarization from the final season of the Cosmic Anisotropy Polarization MAPper
(CAPMAP). The data set was obtained in winter 2004-2005 with the 7 m antenna in
Crawford Hill, New Jersey, from 12 W-band (84-100 GHz) and 4 Q-band (36-45 GHz)
correlation polarimeters with 3.3' and 6.5' beamsizes, respectively. After
selection criteria were applied, 956 (939) hours of data survived for analysis
of W-band (Q-band) data. Two independent and complementary pipelines produced
results in excellent agreement with each other. A broad suite of null tests as
well as extensive simulations showed that systematic errors were minimal, and a
comparison of the W-band and Q-band sky maps revealed no contamination from
galactic foregrounds. We report the E-mode and B-mode power spectra in 7 bands
in the range 200 < l < 3000, extending the range of previous measurements to
higher l. The E-mode spectrum, which is detected at 11 sigma significance, is
in agreement with cosmological predictions and with previous work at other
frequencies and angular resolutions. The BB power spectrum provides one of the
best limits to date on B-mode power at 4.8 uK^2 (95% confidence).Comment: 19 pages, 17 figures, 2 tables, submitted to Ap
Photochemistry of Furyl- and Thienyldiazomethanes: Spectroscopic Characterization of Triplet 3-Thienylcarbene
Photolysis (λ \u3e 543 nm) of 3-thienyldiazomethane (1), matrix isolated in Ar or N2 at 10 K, yields triplet 3-thienylcarbene (13) and α-thial-methylenecyclopropene (9). Carbene 13 was characterized by IR, UV/vis, and EPR spectroscopy. The conformational isomers of 3-thienylcarbene (s-E and s-Z) exhibit an unusually large difference in zero-field splitting parameters in the triplet EPR spectrum (|D/hc| = 0.508 cm–1, |E/hc| = 0.0554 cm–1; |D/hc| = 0.579 cm–1, |E/hc| = 0.0315 cm–1). Natural Bond Orbital (NBO) calculations reveal substantially differing spin densities in the 3-thienyl ring at the positions adjacent to the carbene center, which is one factor contributing to the large difference in D values. NBO calculations also reveal a stabilizing interaction between the sp orbital of the carbene carbon in the s-Z rotamer of 13 and the antibonding σ orbital between sulfur and the neighboring carbon—an interaction that is not observed in the s-E rotamer of 13. In contrast to the EPR spectra, the electronic absorption spectra of the rotamers of triplet 3-thienylcarbene (13) are indistinguishable under our experimental conditions. The carbene exhibits a weak electronic absorption in the visible spectrum (λmax = 467 nm) that is characteristic of triplet arylcarbenes. Although studies of 2-thienyldiazomethane (2), 3-furyldiazomethane (3), or 2-furyldiazomethane (4) provided further insight into the photochemical interconversions among C5H4S or C5H4O isomers, these studies did not lead to the spectroscopic detection of the corresponding triplet carbenes (2-thienylcarbene (11), 3-furylcarbene (23), or 2-furylcarbene (22), respectively)
Optimizing the vertebrate vestibular semicircular canal: could we balance any better?
The fluid-filled semicircular canals (SCCs) of the vestibular system are used
by all vertebrates to sense angular rotation. Despite masses spanning seven
decades, all mammalian SCCs are nearly the same size. We propose that the SCC
represents a sensory organ that evolution has `optimally designed'. Four
geometric parameters are used to characterize the SCC, and `building materials'
of given physical properties are assumed. Identifying physical and
physiological constraints on SCC operation, we find that the most sensitive SCC
has dimensions consistent with available data.Comment: 4 pages, 3 figure
Numerical simulation of time delay interferometry for eLISA/NGO
eLISA/NGO is a new gravitational wave detection proposal with arm length of
10^6 km and one interferometer down-scaled from LISA. Just like LISA and
ASTROD-GW, in order to attain the requisite sensitivity for eLISA/NGO, laser
frequency noise must be suppressed to below the secondary noises such as the
optical path noise, acceleration noise etc. In previous papers, we have
performed the numerical simulation of the time delay interferometry (TDI) for
LISA and ASTROD-GW with one arm dysfunctional by using the CGC 2.7 ephemeris.
The results are well below their respective limits which the laser frequency
noise is required to be suppressed. In this paper, we follow the same procedure
to simulate the time delay interferometry numerically. To do this, we work out
a set of 1000-day optimized mission orbits of the eLISA/NGO spacecraft starting
at January 1st, 2021 using the CGC 2.7 ephemeris framework. We then use the
numerical method to calculate the residual optical path differences in the
second-generation TDI solutions as in our previous papers. The maximum path
length difference, for all configurations calculated, is below 13 mm (43 ps).
It is well below the limit which the laser frequency noise is required to be
suppressed for eLISA/NGO. We compare and discuss the resulting differences due
to the different arm lengths for various mission proposals -- eLISA/NGO, an
NGO-LISA-type mission with a nominal arm length of 2 x 10^6 km, LISA and
ASTROD-GW.Comment: 17 pages, 13 figures, 3 tables, minor changes in description to match
the accepted version of Classical and Quantum Gravity. arXiv admin note: text
overlap with arXiv:1102.496
Co-phasing the Large Binocular Telescope: status and performance of LBTI/PHASECam
The Large Binocular Telescope Interferometer is a NASA-funded nulling and
imaging instrument designed to coherently combine the two 8.4-m primary mirrors
of the LBT for high-sensitivity, high-contrast, and high-resolution infrared
imaging (1.5-13 um). PHASECam is LBTI's near-infrared camera used to measure
tip-tilt and phase variations between the two AO-corrected apertures and
provide high-angular resolution observations. We report on the status of the
system and describe its on-sky performance measured during the first semester
of 2014. With a spatial resolution equivalent to that of a 22.8-meter telescope
and the light-gathering power of single 11.8-meter mirror, the co-phased LBT
can be considered to be a forerunner of the next-generation extremely large
telescopes (ELT).Comment: 8 pages, 5 figures, SPIE Conference proceeding
Consistency of cosmic microwave background temperature measurements in three frequency bands in the 2500-square-degree SPT-SZ survey
We present an internal consistency test of South Pole Telescope (SPT)
measurements of the cosmic microwave background (CMB) temperature anisotropy
using three-band data from the SPT-SZ survey. These measurements are made from
observations of ~2500 deg^2 of sky in three frequency bands centered at 95,
150, and 220 GHz. We combine the information from these three bands into six
semi-independent estimates of the CMB power spectrum (three single-frequency
power spectra and three cross-frequency spectra) over the multipole range 650 <
l < 3000. We subtract an estimate of foreground power from each power spectrum
and evaluate the consistency among the resulting CMB-only spectra. We determine
that the six foreground-cleaned power spectra are consistent with the null
hypothesis, in which the six cleaned spectra contain only CMB power and noise.
A fit of the data to this model results in a chi-squared value of 236.3 for 235
degrees of freedom, and the probability to exceed this chi-squared value is
46%.Comment: 21 pages, 4 figures, current version matches version published in
JCA
FIRBACK Source Counts and Cosmological Implications
FIRBACK is a one of the deepest surveys performed at 170 microns with ISOPHOT
onboard ISO, and is aimed at the study of cosmic far infrared background
sources. About 300 galaxies are detected in an area of four square degrees, and
source counts present a strong slope of 2.2 on an integral "logN-logS" plot,
which cannot be due to cosmological evolution if no K-correction is present.
The resolved sources account for less than 10% of the Cosmic Infrared
Background at 170 microns. In order to understand the nature of the sources
contributing to the CIB, and to explain deep source counts at other
wavelengths, we have developed a phenomenological model, which constrains in a
simple way the luminosity function evolution with redshift, and fits all the
existing deep source counts from the mid-infrared to the submillimetre range.
Images, materials and papers available on the FIRBACK web:
http://wwwfirback.ias.u-psud.fr wwwfirback.ias.u-psud.frComment: proceedings of "ISO Surveys of a Dusty Universe", eds. D. Lemke, M.
Stickel, K. Wilke, Ringberg, 8-12 Nov 1999, to appear in Springer 'Lecture
Notes of Physics'. 8 pages, 7 eps figures, .sty include
- …