3,984 research outputs found

    Galaxy correlations and the BAO in a void universe: structure formation as a test of the Copernican Principle

    Get PDF
    A suggested solution to the dark energy problem is the void model, where accelerated expansion is replaced by Hubble-scale inhomogeneity. In these models, density perturbations grow on a radially inhomogeneous background. This large scale inhomogeneity distorts the spherical Baryon Acoustic Oscillation feature into an ellipsoid which implies that the bump in the galaxy correlation function occurs at different scales in the radial and transverse correlation functions. We compute these for the first time, under the approximation that curvature gradients do not couple the scalar modes to vector and tensor modes. The radial and transverse correlation functions are very different from those of the concordance model, even when the models have the same average BAO scale. This implies that if void models are fine-tuned to satisfy average BAO data, there is enough extra information in the correlation functions to distinguish a void model from the concordance model. We expect these new features to remain when the full perturbation equations are solved, which means that the radial and transverse galaxy correlation functions can be used as a powerful test of the Copernican Principle.Comment: 12 pages, 8 figures, matches published versio

    An application of software design and documentation language

    Get PDF
    The software design and documentation language (SDDL) is a general purpose processor to support a lanugage for the description of any system, structure, concept, or procedure that may be presented from the viewpoint of a collection of hierarchical entities linked together by means of binary connections. The language comprises a set of rules of syntax, primitive construct classes (module, block, and module invocation), and language control directives. The result is a language with a fixed grammar, variable alphabet and punctuation, and an extendable vocabulary. The application of SDDL to the detailed software design of the Command Data Subsystem for the Galileo Spacecraft is discussed. A set of constructs was developed and applied. These constructs are evaluated and examples of their application are considered

    SS433:the microquasar link with ULXs?

    Get PDF
    SS433 is the prototype microquasar in the Galaxy and may even be analogous to the ULX sources if the jets' kinetic energy is taken into account. However, in spite of 20 years of study, our constraints on the nature of the binary system are extremely limited as a result of the difficulty of locating spectral features that can reveal the nature and motion of the mass donor. Newly acquired, high resolution blue spectra taken when the (precessing) disc is edge-on suggest that the binary is close to a common-envelope phase, and hence providing kinematic constraints is extremely difficult. Nevertheless, we do find evidence for a massive donor, as expected for the inferred very high mass transfer rate, and we compare SS433's properties with those of Cyg X-3.Comment: 4 pages, 3 figures, to appear in "Compact binaries in the Galaxy and beyond

    Combined Reconstruction and Registration of Digital Breast Tomosynthesis

    Get PDF
    Digital breast tomosynthesis (DBT) has the potential to en- hance breast cancer detection by reducing the confounding e ect of su- perimposed tissue associated with conventional mammography. In addi- tion the increased volumetric information should enable temporal datasets to be more accurately compared, a task that radiologists routinely apply to conventional mammograms to detect the changes associated with ma- lignancy. In this paper we address the problem of comparing DBT data by combining reconstruction of a pair of temporal volumes with their reg- istration. Using a simple test object, and DBT simulations from in vivo breast compressions imaged using MRI, we demonstrate that this com- bined reconstruction and registration approach produces improvements in both the reconstructed volumes and the estimated transformation pa- rameters when compared to performing the tasks sequentially

    Relativistic cosmological perturbation scheme on a general background: scalar perturbations for irrotational dust

    Full text link
    In standard perturbation approaches and N-body simulations, inhomogeneities are described to evolve on a predefined background cosmology, commonly taken as the homogeneous-isotropic solutions of Einstein's field equations (Friedmann-Lema\^itre-Robertson-Walker (FLRW) cosmologies). In order to make physical sense, this background cosmology must provide a reasonable description of the effective, i.e. spatially averaged, evolution of structure inhomogeneities also in the nonlinear regime. Guided by the insights that (i) the average over an inhomogeneous distribution of matter and geometry is in general not given by a homogeneous solution of general relativity, and that (ii) the class of FLRW cosmologies is not only locally but also globally gravitationally unstable in relevant cases, we here develop a perturbation approach that describes the evolution of inhomogeneities on a general background being defined by the spatially averaged evolution equations. This physical background interacts with the formation of structures. We derive and discuss the resulting perturbation scheme for the matter model `irrotational dust' in the Lagrangian picture, restricting our attention to scalar perturbations.Comment: 18 pages. Matches published version in CQ

    Nonlinear relativistic corrections to cosmological distances, redshift and gravitational lensing magnification. I - Key results

    Get PDF
    The next generation of telescopes will usher in an era of precision cosmology, capable of determining the cosmological model to beyond the percent level. For this to be effective, the theoretical model must be understood to at least the same level of precision. A range of subtle relativistic effects remain to be explored theoretically, and offer the potential for probing general relativity in this new regime. We present the distance-redshift relation to second order in cosmological perturbation theory for a general dark energy model. This relation determines the magnification of sources at high precision, as well as redshift space distortions in the mildly non-linear regime. We identify a range of new lensing effects, including: double-integrated and nonlinear integrated Sach-Wolfe contributions, transverse Doppler effects, lensing from the induced vector mode and gravitational wave backgrounds, in addition to lensing from the second-order potential. Modifications to Doppler lensing from redshift-space distortions are identified. Finally, we find a new double-coupling between the density fluctuations integrated along the line of sight, and gradients in the density fluctuations coupled to transverse velocities along the line of sight. These can be large and thus offer important new probes of gravitational lensing and general relativity. This paper accompanies arXiv:1402.1933, where a comprehensive derivation is given.Comment: 7 pages. v2 has significant presentational changes. v3 has new discussion on the magnitude of the corrections, plus minor corrections, and is the version to appear in CQ

    Halting indigenous biodiversity decline: ambiguity, equity, and outcomes in RMA assessment of significance

    Get PDF
    In New Zealand, assessment of ‘significance’ is undertaken to give effect to a legal requirement for local authorities to provide for protection of significant sites under the Resource Management Act (1991). The ambiguity of the statute enables different interests to define significance according to their goals: vested interests (developers), local authorities, and non-vested interests in pursuit of protection of environmental public goods may advance different definitions. We examine two sets of criteria used for assessment of significance for biological diversity under the Act. Criteria adapted from the 1980s Protected Natural Areas Programme are inadequate to achieve the maintenance of biological diversity if ranking is used to identify only highest priority sites. Norton and Roper-Lindsay (2004) propose a narrow definition of significance and criteria that identify only a few high-quality sites as significant. Both sets are likely to serve the interests of developers and local authorities, but place the penalty of uncertainty on non-vested interests seeking to maintain biological diversity, and are likely to exacerbate the decline of biological diversity and the loss of landscape-scale processes required for its persistence. When adopting criteria for assessment of significance, we suggest local authorities should consider whose interests are served by different criteria sets, and who will bear the penalty of uncertainty regarding biological diversity outcomes. They should also ask whether significance criteria are adequate, and sufficiently robust to the uncertainty inherent in the assessment of natural values, to halt the decline of indigenous biological diversity
    corecore