365 research outputs found

    Longitudinal molecular microbial analysis of influenza-like illness in New York City, may 2009 through may 2010

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We performed a longitudinal study of viral etiology in samples collected in New York City during May 2009 to May 2010 from outpatients with fever or respiratory disease symptoms in the context of a pilot respiratory virus surveillance system.</p> <p>Methods</p> <p>Samples were assessed for the presence of 13 viruses, including influenza A virus, by MassTag PCR.</p> <p>Results</p> <p>At least one virus was detected in 52% of 940 samples analyzed, with 3% showing co-infections. The most frequently detected agents were rhinoviruses and influenza A, all representing the 2009 pandemic H1N1 strain. The incidence of influenza H1N1-positive samples was highest in late spring 2009, followed by a decline in summer and early fall, when rhinovirus infections became predominant before H1N1 reemerged in winter. Our study also identified a focal outbreak of enterovirus 68 in the early fall of 2009.</p> <p>Conclusion</p> <p>MassTag multiplex PCR affords opportunities to track the epidemiology of infectious diseases and may guide clinicians and public health practitioners in influenza-like illness and outbreak management. Nonetheless, a substantial proportion of influenza-like illness remains unexplained underscoring the need for additional platforms.</p

    ICTV Virus Taxonomy Profile: Bornaviridae

    Get PDF
    Members of the family Bornaviridae produce enveloped virions containing a linear negative-sense non-segmented RNA genome of about 9 kb. Bornaviruses are found in mammals, birds, reptiles and fish. The most-studied viruses with public health and veterinary impact are Borna disease virus 1 and variegated squirrel bornavirus 1, both of which cause fatal encephalitis in humans. Several orthobornaviruses cause neurological and intestinal disorders in birds, mostly parrots. Endogenous bornavirus-like sequences occur in the genomes of various animals. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Bornaviridae, which is available at ictv.global/report/bornaviridae

    Streptococcus pneumoniae Coinfection Is Correlated with the Severity of H1N1 Pandemic Influenza

    Get PDF
    Initial reports in May 2009 of the novel influenza strain H1N1pdm estimated a case fatality rate (CFR) of 0.6%, similar to that of seasonal influenza. In July 2009, however, Argentina reported 3056 cases with 137 deaths, representing a CFR of 4.5%. Potential explanations for increased CFR included virus reassortment or genetic drift, or infection of a more vulnerable population. Virus genomic sequencing of 26 Argentinian samples representing both severe and mild disease indicated no evidence of reassortment, mutations associated with resistance to antiviral drugs, or genetic drift that might contribute to virulence. Furthermore, no evidence was found for increased frequency of risk factors for H1N1pdm disease.We examined nasopharyngeal swab samples (NPS) from 199 cases of H1N1pdm infection from Argentina with MassTag PCR, testing for 33 additional microbial agents. The study population consisted of 199 H1N1pdm-infected subjects sampled between 23 June and 4 July 2009. Thirty-nine had severe disease defined as death (n = 20) or hospitalization (n = 19); 160 had mild disease. At least one additional agent of potential pathogenic importance was identified in 152 samples (76%), including Streptococcus pneumoniae (n = 62); Haemophilus influenzae (n = 104); human respiratory syncytial virus A (n = 11) and B (n = 1); human rhinovirus A (n = 1) and B (n = 4); human coronaviruses 229E (n = 1) and OC43 (n = 2); Klebsiella pneumoniae (n = 2); Acinetobacter baumannii (n = 2); Serratia marcescens (n = 1); and Staphylococcus aureus (n = 35) and methicillin-resistant S. aureus (MRSA, n = 6). The presence of S. pneumoniae was strongly correlated with severe disease. S. pneumoniae was present in 56.4% of severe cases versus 25% of mild cases; more than one-third of H1N1pdm NPS with S. pneumoniae were from subjects with severe disease (22 of 62 S. pneumoniae-positive NPS, p = 0.0004). In subjects 6 to 55 years of age, the adjusted odds ratio (OR) of severe disease in the presence of S. pneumoniae was 125.5 (95% confidence interval [CI], 16.95, 928.72; p<0.0001).The association of S. pneumoniae with morbidity and mortality is established in the current and previous influenza pandemics. However, this study is the first to demonstrate the prognostic significance of non-invasive antemortem diagnosis of S. pneumoniae infection and may provide insights into clinical management

    Rapid Screening for Entry Inhibitors of Highly Pathogenic Viruses under Low-Level Biocontainment

    Get PDF
    Emerging viruses including Nipah, Hendra, Lujo, and Junin viruses have enormous potential to spread rapidly. Nipah virus, after emerging as a zoonosis, has also evolved the capacity for human-to-human transmission. Most of the diseases caused by these pathogens are untreatable and require high biocontainment conditions. Universal methods for rapidly identifying and screening candidate antivirals are urgently needed. We have developed a modular antiviral platform strategy that relies on simple bioinformatic and genetic information about each pathogen. Central to this platform is the use of envelope glycoprotein cDNAs to establish multi-cycle replication systems under BSL2 conditions for viral pathogens that normally require BSL3 and BSL4 facilities. We generated monoclonal antibodies against Nipah G by cDNA immunization in rats, and we showed that these antibodies neutralize both Nipah and Hendra live viruses. We then used these effective Henipavirus inhibitors to validate our screening strategy. Our proposed strategy should contribute to the response capability for emerging infectious diseases, providing a way to initiate antiviral development immediately upon identifying novel viruses

    Neutrino-nucleus cross sections for oscillation experiments

    Get PDF
    Neutrino oscillations physics is entered in the precision era. In this context accelerator-based neutrino experiments need a reduction of systematic errors to the level of a few percent. Today one of the most important sources of systematic errors are neutrino-nucleus cross sections which in the hundreds-MeV to few-GeV energy region are known with a precision not exceeding 20%. In this article we review the present experimental and theoretical knowledge of the neutrino-nucleus interaction physics. After introducing neutrino oscillation physics and accelerator-based neutrino experiments, we overview general aspects of the neutrino-nucleus cross sections, both theoretical and experimental views. Then we focus on these quantities in different reaction channels. We start with the quasielastic and quasielastic-like cross section, putting a special emphasis on multinucleon emission channel which attracted a lot of attention in the last few years. We review the main aspects of the different microscopic models for this channel by discussing analogies and differences among them.The discussion is always driven by a comparison with the experimental data. We then consider the one pion production channel where data-theory agreement remains very unsatisfactory. We describe how to interpret pion data, then we analyze in particular the puzzle related to the impossibility of theoretical models and Monte Carlo to simultaneously describe MiniBooNE and MINERvA experimental results. Inclusive cross sections are also discussed, as well as the comparison between the νμ\nu_\mu and νe\nu_e cross sections, relevant for the CP violation experiments. The impact of the nuclear effects on the reconstruction of neutrino energy and on the determination of the neutrino oscillation parameters is reviewed. A window to the future is finally opened by discussing projects and efforts in future detectors, beams, and analysis

    Potential for La Crosse virus segment reassortment in nature

    Get PDF
    The evolutionary success of La Crosse virus (LACV, family Bunyaviridae) is due to its ability to adapt to changing conditions through intramolecular genetic changes and segment reassortment. Vertical transmission of LACV in mosquitoes increases the potential for segment reassortment. Studies were conducted to determine if segment reassortment was occurring in naturally infected Aedes triseriatus from Wisconsin and Minnesota in 2000, 2004, 2006 and 2007. Mosquito eggs were collected from various sites in Wisconsin and Minnesota. They were reared in the laboratory and adults were tested for LACV antigen by immunofluorescence assay. RNA was isolated from the abdomen of infected mosquitoes and portions of the small (S), medium (M) and large (L) viral genome segments were amplified by RT-PCR and sequenced. Overall, the viral sequences from 40 infected mosquitoes and 5 virus isolates were analyzed. Phylogenetic and linkage disequilibrium analyses revealed that approximately 25% of infected mosquitoes and viruses contained reassorted genome segments, suggesting that LACV segment reassortment is frequent in nature
    corecore