31 research outputs found

    The stability of the swirling flows with applications to hydraulic turbines

    Get PDF
    The presence of a large variety of vortex flows in nature and technology has raised many theoretical and numerical problems concerning the stability of such structures. In these conditions, in order to minimize the simulation requirements for nonlinear time-dependent problems, stability analyses of vortexmotions are of main importance in flow control problems. A particular case arises in the Francis turbines operate at partial discharge. The swirling flow downstream the runner becomes unstable inside the draft tube cone, with the development of a precessing helical vortex and associated severe pressure fluctuations [1]

    Pyruvate kinases have an intrinsic and conserved decarboxylase activity

    Get PDF
    The phosphotransfer mechanism of pyruvate kinases (PYKs) has been studied in detail, but the mechanism of the intrinsic decarboxylase reaction catalysed by PYKs is still unknown. 1H NMR was used in this work to follow oxaloacetate (OAA) decarboxylation by trypanosomatid and human PYKs confirming that the decarboxylase activity is conserved across distantly related species. Crystal structures of Trypanosoma brucei PYK (TbPYK) complexed with the product of the decarboxylase reaction (pyruvate), and a series of substrate analogues (D-malate, α-ketoglutarate and oxalate) show that the OAA analogues bind to the kinase active site with similar binding modes, confirming that both decarboxylase and kinase activities share a common site for substrate binding and catalysis. Decarboxylation of OAA as monitored by NMR for TbPYK is relatively slow with turn-over values of 0.86 s-1 and 1.47 s-1 in the absence and presence of fructose 2,6-bisphosphate (F26BP), respectively. Human M1PYK has a measured turn-over value of 0.50 s-1. The X-ray structures explain why the decarboxylation activity is specific for OAA and is not general for α-keto acid analogues. Conservation of the decarboxylase reaction across divergent species is a consequence of piggybacking on the conserved kinase mechanism which requires a stabilised enol intermediate

    The stability of the swirling flows with applications to hydraulic turbines

    No full text
    The presence of a large variety of vortex flows in nature and technology has raised many theoretical and numerical problems concerning the stability of such structures. In these conditions, in order to minimize the simulation requirements for nonlinear time-dependent problems, stability analyses of vortexmotions are of main importance in flow control problems. A particular case arises in the Francis turbines operate at partial discharge. The swirling flow downstream the runner becomes unstable inside the draft tube cone, with the development of a precessing helical vortex and associated severe pressure fluctuations [1]

    High concentration aqueous magnetic fluids

    No full text
    | openaire: EC/H2020/725513/EU//SuperRepelThis paper is an in-depth analysis devoted to two basic types of water based magnetic fluids (MFs), containing magnetite nanoparticles with electrostatic and with electro-steric stabilization, both obtained by chemical coprecipitation synthesis under atmospheric conditions. The two sets of magnetic fluid samples, one with citric acid (MF/CA) and the other with oleic acid (MF/OA) coated magnetic nanoparticles, respectively, achieved saturation magnetization values of 78.20 kA m−1 for the electrostatically and 48.73 kA m−1 for the electro-sterically stabilized aqueous ferrofluids which are among the highest reported to date. A comprehensive comparative analysis combining electron microscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared spectroscopy, vibrating sample magnetometry, small-angle X-ray and neutron scattering, dynamic light scattering and magneto-rheometry revealed similarities and essential differences on the microscopic and macroscopic level between the two kinds of water-based ferrofluids. While the saturation magnetization values are quite different, the hydrodynamic volume fractions of the highest concentration MF/CA and MF/OA samples are practically the same, due to the significantly different thicknesses of the particles' coating layers. The results of volume fraction dependent structure analyses over a large concentration range by small-angle X-ray and neutron scattering, correlated with magneto-rheological investigations for the electrostatically stabilized MFs, demonstrate formation of short chains of magnetic nanoparticles which are relatively stable against coagulation with increasing concentration, while for MFs with electro-steric stabilization, magnetic field and shear rate dependent loosely bound structures are observed. These particle structures in MF/OA samples manifest themselves already at low volume fraction values, which can be attributed mainly to magnetic interactions of larger size particles, besides non-magnetic interactions mediated by excess surfactant.Peer reviewe
    corecore