220 research outputs found

    Fixing the renormalisation scheme in NNLO perturbative QCD using conformal limit arguments

    Get PDF
    We discuss how the renormalisation scheme ambiguities in QCD can be fixed, when two observables are related, by requiring the coefficients in the perturbative expansion relating the two observables to have their conformal limit values, i.e. to be independent of the ÎČ\beta-function of the renormalised coupling. We show how the next-to-leading order BLM automatic scale fixing method can be extended to next-to-next-to-leading order to fix both the renormalisation scale and ÎČ2\beta_2 in a unique way. As an example we apply the method to the relation between Bjorken's sum rule and Re+e−R_{e+e-} and compare with experimental data as well as other scheme fixing methods.Comment: 14 pages LaTeX, uses revtex.sty, 1 encapsulated PostScript figur

    Effects of technicolor on standard model running couplings

    Full text link
    We discuss the running couplings in the standard model, SU(3)C×)_C \times SU(2)L×)_L \times U(1)Y)_Y, when the Higgs sector is replaced by SU(NTC)N_{TC}) technicolor. Particular attention is given to the running of the couplings at momentum scales where technicolor is nonperturbative, and in this region we apply a relativistic constituent technifermion model. This model has been tested against the known running of the QED coupling due to nonperturbative QCD. An understanding of this low momentum running allows the calculation of the couplings at a higher scale, Λpert\Lambda_{pert}, where technicolor becomes perturbative. We provide numerical values for the changes in the three standard model couplings between mZm_Z and Λpert\Lambda_{pert} due to technicolor, assuming separately ``one doublet'' and ``one family'' technicolor models. The distinction between a running and walking technicolor coupling is also considered.Comment: 14 pages of LaTeX, UTPT-94-

    The order O(αˉ αˉs)O(\bar{\alpha}~\bar{\alpha}_s) and O(αˉ2)O(\bar{\alpha}^2) corrections to the decay width of the neutral Higgs boson to the bˉb\bar{b}b pair

    Full text link
    We present the analytical expressions for the contributions of the order O(αˉ αˉs)O(\bar{\alpha}~\bar{\alpha}_s) and O(αˉ2)O(\bar{\alpha}^2) corrections to the decay width of the Standard Model Higgs boson into the bˉb\bar{b}b-pair. The numerical value of the mixed QED and QCD correction of order O(αˉ αˉs)O(\bar{\alpha}~\bar{\alpha}_s) is comparable with the previously calculated terms in the perturbative series for Γ(H0→bˉb)\Gamma(H^0\to\bar{b}b).Comment: LaTeX 5 pages, accepted for publication in Pisma Zh. Eksp. Teor. Fiz. v 66, N5 (1997

    Higgs Decay to Top Quarks at O(\alpha_s^2)

    Full text link
    Three-loop corrections to the scalar and pseudo-scalar current correlator are calculated. By applying the large momentum expansion mass terms up to order (m^2/q^2)^4 are evaluated analytically. As an application O(\alpha_s^2) corrections to the decay of a scalar and pseudo-scalar Higgs boson into top quarks are considered. It is shown that for a Higgs mass not far above the ttˉt\bar{t} threshold these higher order mass corrections are necessary to get reliable results.Comment: Latex, 20 pages, 14 ps-figures. The complete paper, including figures, is also available via anonymous ftp at ftp://ttpux2.physik.uni-karlsruhe.de/ , or via www at http://www-ttp.physik.uni-karlsruhe.de/cgi-bin/preprints

    Partons and Jets at the LHC

    Full text link
    I review some issues related to short distance QCD and its relation to the experimental program of the Large Hadron Collider (LHC) now under construction in Geneva.Comment: Talk at the conference QCD2002 at IIT Kanpur, India, November 2002. Ten pages with 12 figure

    Extended analytic QCD model with perturbative QCD behavior at high momenta

    Full text link
    In contrast to perturbative QCD, the analytic QCD models have running coupling whose analytic properties correctly mirror those of spacelike observables. The discontinuity (spectral) function of such running coupling is expected to agree with the perturbative case at large timelike momenta; however, at low timelike momenta it is not known. In the latter regime, we parametrize the unknown behavior of the spectral function as a sum of (two) delta functions; while the onset of the perturbative behavior of the spectral function is set to be 1.0-1.5 GeV. This is in close analogy with the "minimal hadronic ansatz" used in the literature for modeling spectral functions of correlators. For the running coupling itself, we impose the condition that it basically merges with the perturbative coupling at high spacelike momenta. In addition, we require that the well-measured nonstrange semihadronic (V+A) tau decay ratio value be reproduced by the model. We thus obtain a QCD framework which is basically indistinguishable from perturbative QCD at high momenta (Q > 1 GeV), and at low momenta it respects the basic analyticity properties of spacelike observables as dictated by the general principles of the local quantum field theories.Comment: 15 pages, 6 figures; in v2 Sec.IV is extended after Eq.(48) and refs.[51-52] added; v2 published in Phys.Rev.D85,114043(2012

    Renormalization-Scale-Invariant PQCD Predictions for R_e+e- and the Bjorken Sum Rule at Next-to-Leading Order

    Get PDF
    We discuss application of the physical QCD effective charge αV\alpha_V, defined via the heavy-quark potential, in perturbative calculations at next-to-leading order. When coupled with the Brodsky-Lepage-Mackenzie prescription for fixing the renormalization scales, the resulting series are automatically and naturally scale and scheme independent, and represent unambiguous predictions of perturbative QCD. We consider in detail such commensurate scale relations for the e+e−e^+e^- annihilation ratio Re+e−R_{e^+e^-} and the Bjorken sum rule. In both cases the improved predictions are in excellent agreement with experiment.Comment: 13 Latex pages with 5 figures; to be published in Physical Review

    Commensurate Scale Relations in Quantum Chromodynamics

    Full text link
    We use the BLM method to show that perturbatively-calculable observables in QCD can be related to each other without renormalization scale or scheme ambiguity. We define and study the commensurate scale relations. We show that the commensurate scales satisfy the renormalization group transitivity rule which ensures that predictions in PQCD are independent of the choice of an intermediate renormalization scheme. We generalize the BLM procedure to higher order. The application of this procedure to relate known physical observables in QCD gives surprisingly simple results. In particular, the annihilation ratio Re+e−R_{e^+e^-} and the Bjorken sum rule for polarized electroproduction are related through simple coefficients, which reinforces the idea of a hidden symmetry between these two observables.Comment: 35 pages (RevTeX), one PostScript figure included at the end. SLAC-PUB-6481, UMD Preprint #94-13

    Vacuum Polarisation and Hadronic Contribution to muon g-2 from Lattice QCD

    Get PDF
    We compute the vacuum polarisation on the lattice in quenched QCD using non-perturbatively improved Wilson fermions. Above Q^2 of about 2 GeV^2 the results are very close to the predictions of perturbative QCD. Below this scale we see signs of non-perturbative effects which we can describe by the use of dispersion relations. We use our results to estimate the light quark contribution to the muon's anomalous magnetic moment. We find the result 446(23) x 10^{-10}, where the error only includes statistical uncertainties. Finally we make some comments on the applicability of the Operator Product Expansion to our data.Comment: 38 pages, 15 figure

    Application of 'Optimised' Perturbation Theory to Determination of alpha_s(M_Z^2) from Hadronic Event Shape Observables in e+e- Annihilation

    Full text link
    We have applied so-called `optimised' perturbation theory to resolve the renormalisation-scale (mu) ambiguity of exact O(alpha_s^2) QCD calculations of event shape observables in e+e- --> hadrons. We fitted the optimised predictions for 15 observables to hadronic Z0 decay data from the SLD experiment to determine alpha_s(M_Z^2). Comparing with results using the physical scale mu = M_Z we found no reduction in the scatter among alpha_s(M_Z^2) values from the 15 observables, implying that the O(alpha_s^2) predictions with optimised scales are numerically no closer to the exact all-orders results than those with the physical scale.Comment: 19 pages for text plus 4 pages for figures which were tar'ed, gzip'ed, uuencoded and put as one package. Original text is in PS format and original figures are in EPS forma
    • 

    corecore