151 research outputs found

    Exact c-number Representation of Non-Markovian Quantum Dissipation

    Full text link
    The reduced dynamics of a quantum system interacting with a linear heat bath finds an exact representation in terms of a stochastic Schr{\"o}dinger equation. All memory effects of the reservoir are transformed into noise correlations and mean-field friction. The classical limit of the resulting stochastic dynamics is shown to be a generalized Langevin equation, and conventional quantum state diffusion is recovered in the Born--Markov approximation. The non-Markovian exact dynamics, valid at arbitrary temperature and damping strength, is exemplified by an application to the dissipative two-state system.Comment: 4 pages, 2 figures. To be published in Phys. Rev. Let

    Quantum Ratchets at High Temperatures

    Full text link
    Using the continued-fraction method we solve the Caldeira-Leggett master equation in the phase-space (Wigner) representation to study Quantum ratchets. Broken spatial symmetry, irreversibility and periodic forcing allows for a net current in these systems. We calculate this current as a function of the force under adiabatic conditions. Starting from the classical limit we make the system quantal. In the quantum regime tunnel events and over-barrier wave reflection phenomena modify the classical result. Finally, using the phase-space formalism we give some insights about the decoherence in these systems.Comment: submitted to Physia E (proceedings of conference "Frontiers of Quantum and Mesoscopic Thermodynamics", Prague 26-29 July 2004

    Dynamical simulation of current fluctuations in a dissipative two-state system

    Full text link
    Current fluctuations in a dissipative two-state system have been studied using a novel quantum dynamics simulation method. After a transformation of the path integrals, the tunneling dynamics is computed by deterministic integration over the real-time paths under the influence of colored noise. The nature of the transition from coherent to incoherent dynamics at low temperatures is re-examined.Comment: 4 pages, 4 figures; to appear in Phys. Rev. Letter

    Measuring the decoherence rate in a semiconductor charge qubit

    Get PDF
    We describe a method by which the decoherence time of a solid state qubit may be measured. The qubit is coded in the orbital degree of freedom of a single electron bound to a pair of donor impurities in a semiconductor host. The qubit is manipulated by adiabatically varying an external electric field. We show that, by measuring the total probability of a successful qubit rotation as a function of the control field parameters, the decoherence rate may be determined. We estimate various system parameters, including the decoherence rates due to electromagnetic fluctuations and acoustic phonons. We find that, for reasonable physical parameters, the experiment is possible with existing technology. In particular, the use of adiabatic control fields implies that the experiment can be performed with control electronics with a time resolution of tens of nanoseconds.Comment: 9 pages, 6 figures, revtex

    Coherence correlations in the dissipative two-state system

    Full text link
    We study the dynamical equilibrium correlation function of the polaron-dressed tunneling operator in the dissipative two-state system. Unlike the position operator, this coherence operator acts in the full system-plus-reservoir space. We calculate the relevant modified influence functional and present the exact formal expression for the coherence correlations in the form of a series in the number of tunneling events. For an Ohmic spectral density with the particular damping strength K=1/2K=1/2, the series is summed in analytic form for all times and for arbitrary values of temperature and bias. Using a diagrammatic approach, we find the long-time dynamics in the regime K<1K<1. In general, the coherence correlations decay algebraically as t2Kt^{-2K} at T=0. This implies that the linear static susceptibility diverges for K1/2K\le 1/2 as T0T\to 0, whereas it stays finite for K>1/2K>1/2 in this limit. The qualitative differences with respect to the asymptotic behavior of the position correlations are explained.Comment: 19 pages, 4 figures, to be published in Phys. Rev.

    Non-Markoffian effects of a simple nonlinear bath

    Full text link
    We analyze a model of a nonlinear bath consisting of a single two-level system coupled to a linear bath (a classical noise force in the limit considered here). This allows us to study the effects of a nonlinear, non-Markoffian bath in a particularly simple situation. We analyze the effects of this bath onto the dynamics of a spin by calculating the decay of the equilibrium correlator of the spin's z-component. The exact results are compared with those obtained using three commonly used approximations: a Markoffian master equation for the spin dynamics, a weak-coupling approximation, and the substitution of a linear bath for the original nonlinear bath.Comment: 7 pages, 6 figure

    Spin Star as Switch for Quantum Networks

    Full text link
    Quantum state transfer is an important task in quantum information processing. It is known that one can engineer the couplings of a one-dimensional spin chain to achieve the goal of perfect state transfer. To leverage the value of these spin chains, a spin star is potentially useful for connecting different parts of a quantum network. In this work, we extend the spin-chain engineering problem to the problems with a topology of a star network. We show that a permanently coupled spin star can function as a network switch for transferring quantum states selectively from one node to another by varying the local potentials only. Together with one-dimensional chains, this result allows applications of quantum state transfer be applied to more general quantum networks.Comment: 10 pages, 2 figur

    Phase diffusion as a model for coherent suppression of tunneling in the presence of noise

    Get PDF
    We study the stabilization of coherent suppression of tunneling in a driven double-well system subject to random periodic δ\delta-function ``kicks''. We model dissipation due to this stochastic process as a phase diffusion process for an effective two-level system and derive a corresponding set of Bloch equations with phase damping terms that agree with the periodically kicked system at discrete times. We demonstrate that the ability of noise to localize the system on either side of the double-well potenital arises from overdamping of the phase of oscillation and not from any cooperative effect between the noise and the driving field. The model is investigated with a square wave drive, which has qualitatively similar features to the widely studied cosinusoidal drive, but has the additional advantage of allowing one to derive exact analytic expressions.Comment: 17 pages, 4 figures, submitted to Phys. Rev.

    Dynamical control of correlated states in a square quantum dot

    Get PDF
    In the limit of low particle density, electrons confined to a quantum dot form strongly correlated states termed Wigner molecules, in which the Coulomb interaction causes the electrons to become highly localized in space. By using an effective model of Hubbard-type to describe these states, we investigate how an oscillatory electric field can drive the dynamics of a two-electron Wigner molecule held in a square quantum dot. We find that, for certain combinations of frequency and strength of the applied field, the tunneling between various charge configurations can be strongly quenched, and we relate this phenomenon to the presence of anti-crossings in the Floquet quasi-energy spectrum. We further obtain simple analytic expressions for the location of these anti-crossings, which allows the effective parameters for a given quantum dot to be directly measured in experiment, and suggests the exciting possibility of using ac-fields to control the time evolution of entangled states in mesoscopic devices.Comment: Replaced with version to be published in Phys. Rev.

    Effect of Nuclear Quadrupole Interaction on the Relaxation in Amorphous Solids

    Full text link
    Recently it has been experimentally demonstrated that certain glasses display an unexpected magnetic field dependence of the dielectric constant. In particular, the echo technique experiments have shown that the echo amplitude depends on the magnetic field. The analysis of these experiments results in the conclusion that the effect seems to be related to the nuclear degrees of freedom of tunneling systems. The interactions of a nuclear quadrupole electrical moment with the crystal field and of a nuclear magnetic moment with magnetic field transform the two-level tunneling systems inherent in amorphous dielectrics into many-level tunneling systems. The fact that these features show up at temperatures T<100mKT<100mK, where the properties of amorphous materials are governed by the long-range R3R^{-3} interaction between tunneling systems, suggests that this interaction is responsible for the magnetic field dependent relaxation. We have developed a theory of many-body relaxation in an ensemble of interacting many-level tunneling systems and show that the relaxation rate is controlled by the magnetic field. The results obtained correlate with the available experimental data. Our approach strongly supports the idea that the nuclear quadrupole interaction is just the key for understanding the unusual behavior of glasses in a magnetic field.Comment: 18 pages, 9 figure
    corecore