49 research outputs found

    Chain Inflation in the Landscape: "Bubble Bubble Toil and Trouble"

    Full text link
    In the model of Chain Inflation, a sequential chain of coupled scalar fields drives inflation. We consider a multidimensional potential with a large number of bowls, or local minima, separated by energy barriers: inflation takes place as the system tunnels from the highest energy bowl to another bowl of lower energy, and so on until it reaches the zero energy ground state. Such a scenario can be motivated by the many vacua in the stringy landscape, and our model can apply to other multidimensional potentials. The ''graceful exit'' problem of Old Inflation is resolved since reheating is easily achieved at each stage. Coupling between the fields is crucial to the scenario. The model is quite generic and succeeds for natural couplings and parameters. Chain inflation succeeds for a wide variety of energy scales -- for potentials ranging from 10MeV scale inflation to 101610^{16} GeV scale inflation.Comment: 31 pages, 3 figures, one reference adde

    Dark Matter Capture in the First Stars: a Power Source and Limit on Stellar Mass

    Full text link
    The annihilation of weakly interacting massive particles can provide an important heat source for the first (Pop. III) stars, potentially leading to a new phase of stellar evolution known as a "Dark Star". When dark matter (DM) capture via scattering off of baryons is included, the luminosity from DM annihilation may dominate over the luminosity due to fusion, depending on the DM density and scattering cross-section. The influx of DM due to capture may thus prolong the lifetime of the Dark Stars. Comparison of DM luminosity with the Eddington luminosity for the star may constrain the stellar mass of zero metallicity stars; in this case DM will uniquely determine the mass of the first stars. Alternatively, if sufficiently massive Pop. III stars are found, they might be used to bound dark matter properties.Comment: 19 pages, 4 figures, 3 Tables updated captions and graphs, corrected grammer, and added citations revised for submission to JCA

    Implications of primordial black holes on the first stars and the origin of the super--massive black holes

    Full text link
    If the cosmological dark matter has a component made of small primordial black holes, they may have a significant impact on the physics of the first stars and on the subsequent formation of massive black holes. Primordial black holes would be adiabatically contracted into these stars and then would sink to the stellar center by dynamical friction, creating a larger black hole which may quickly swallow the whole star. If these primordial black holes are heavier than ∌1022g\sim 10^{22} {\rm g}, the first stars would likely live only for a very short time and would not contribute much to the reionization of the universe. They would instead become 10−103M⊙10 - 10^3 M_\odot black holes which (depending on subsequent accretion) could serve as seeds for the super--massive black holes seen at high redshifts as well as those inside galaxies today.Comment: 16 pages, 2 figures. v2: refereed versio

    Dark matter powered stars: Constraints from the extragalactic background light

    Full text link
    The existence of predominantly cold non-baryonic dark matter is unambiguously demonstrated by several observations (e.g., structure formation, big bang nucleosynthesis, gravitational lensing, and rotational curves of spiral galaxies). A candidate well motivated by particle physics is a weakly interacting massive particle (WIMP). Self-annihilating WIMPs would affect the stellar evolution especially in the early universe. Stars powered by self-annihilating WIMP dark matter should possess different properties compared with standard stars. While a direct detection of such dark matter powered stars seems very challenging, their cumulative emission might leave an imprint in the diffuse metagalactic radiation fields, in particular in the mid-infrared part of the electromagnetic spectrum. In this work the possible contributions of dark matter powered stars (dark stars; DSs) to the extragalactic background light (EBL) are calculated. It is shown that existing data and limits of the EBL intensity can already be used to rule out some DS parameter sets.Comment: Accepted for publication in ApJ; 7 pages, 5 figure

    Dark Stars: A New Study of the FIrst Stars in the Universe

    Full text link
    We have proposed that the first phase of stellar evolution in the history of the Universe may be Dark Stars (DS), powered by dark matter heating rather than by nuclear fusion. Weakly Interacting Massive Particles, which may be their own antipartners, collect inside the first stars and annihilate to produce a heat source that can power the stars. A new stellar phase results, a Dark Star, powered by dark matter annihilation as long as there is dark matter fuel, with lifetimes from millions to billions of years. We find that the first stars are very bright (∌106L⊙\sim 10^6 L_\odot) and cool (Tsurf<10,000T_{surf} < 10,000K) during the DS phase, and grow to be very massive (500-1000 times as massive as the Sun). These results differ markedly from the standard picture in the absence of DM heating, in which the maximum mass is about 140M⊙M_\odot and the temperatures are much hotter (Tsurf>50,000T_{surf} > 50,000K); hence DS should be observationally distinct from standard Pop III stars. Once the dark matter fuel is exhausted, the DS becomes a heavy main sequence star; these stars eventually collapse to form massive black holes that may provide seeds for supermassive black holes observed at early times as well as explanations for recent ARCADE data and for intermediate black holes.Comment: article to be published in special issue on Dark Matter and Particle Physics in New Journal of Physic

    Dark Stars and Boosted Dark Matter Annihilation Rates

    Full text link
    Dark Stars (DS) may constitute the first phase of stellar evolution, powered by dark matter (DM) annihilation. We will investigate here the properties of DS assuming the DM particle has the required properties to explain the excess positron and elec- tron signals in the cosmic rays detected by the PAMELA and FERMI satellites. Any possible DM interpretation of these signals requires exotic DM candidates, with an- nihilation cross sections a few orders of magnitude higher than the canonical value required for correct thermal relic abundance for Weakly Interacting Dark Matter can- didates; additionally in most models the annihilation must be preferentially to lep- tons. Secondly, we study the dependence of DS properties on the concentration pa- rameter of the initial DM density profile of the halos where the first stars are formed. We restrict our study to the DM in the star due to simple (vs. extended) adiabatic contraction and minimal (vs. extended) capture; this simple study is sufficient to illustrate dependence on the cross section and concentration parameter. Our basic results are that the final stellar properties, once the star enters the main sequence, are always roughly the same, regardless of the value of boosted annihilation or concentration parameter in the range between c=2 and c=5: stellar mass ~ 1000M\odot, luminosity ~ 10^7 L\odot, lifetime ~ 10^6 yrs (for the minimal DM models considered here; additional DM would lead to more massive dark stars). However, the lifetime, final mass, and final luminosity of the DS show some dependence on boost factor and concentration parameter as discussed in the paper.Comment: 37 pages, 11 figure

    Dark Matter Candidates: A Ten-Point Test

    Full text link
    An extraordinarily rich zoo of non-baryonic Dark Matter candidates has been proposed over the last three decades. Here we present a 10-point test that a new particle has to pass, in order to be considered a viable DM candidate: I.) Does it match the appropriate relic density? II.) Is it {\it cold}? III.) Is it neutral? IV.) Is it consistent with BBN? V.) Does it leave stellar evolution unchanged? VI.) Is it compatible with constraints on self-interactions? VII.) Is it consistent with {\it direct} DM searches? VIII.) Is it compatible with gamma-ray constraints? IX.) Is it compatible with other astrophysical bounds? X.) Can it be probed experimentally?Comment: 29 pages, 12 figure

    Compatibility of DAMA/LIBRA dark matter detection with other searches in light of new Galactic rotation velocity measurements

    Full text link
    The DAMA/NaI and DAMA/LIBRA annual modulation data, which may be interpreted as a signal for the existence of weakly interacting dark matter (WIMPs) in our galactic halo, are re-examined in light of new measurements of the local velocity relative to the galactic halo. In the vicinity of the Sun, the velocity of the Galactic disk has been estimated to be 250 km/s rather than 220 km/s. Our analysis is performed both with and without the channeling effect included. The best fit regions to the DAMA data are shown to move to slightly lower WIMP masses. Compatibility of DAMA data with null results from other experiments (CDMS, XENON10, and CRESST I) is investigated given these new velocities. A small region of spin-independent (elastic) scattering for 7-8 GeV WIMP masses remains at 3σ\sigma. Spin-dependent scattering off of protons is viable for 5-15 GeV WIMP masses for direct detection experiments (but has been argued by others to be further constrained by Super-Kamiokande due to annihilation in the Sun).Comment: 18 pages, 6 figures. v2: added reference, minor changes to match JCAP versio
    corecore