289 research outputs found

    Low-Noise GaAs Quantum Dots for Quantum Photonics

    Get PDF
    Quantum dots are both excellent single-photon sources and hosts for single spins. This combination enables the deterministic generation of Raman-photons -- bandwidth-matched to an atomic quantum-memory -- and the generation of photon cluster states, a resource in quantum communication and measurement-based quantum computing. GaAs quantum dots in AlGaAs can be matched in frequency to a rubidium-based photon memory, and have potentially improved electron spin coherence compared to the widely used InGaAs quantum dots. However, their charge stability and optical linewidths are typically much worse than for their InGaAs counterparts. Here, we embed GaAs quantum dots into an nn-ii-pp-diode specially designed for low-temperature operation. We demonstrate ultra-low noise behaviour: charge control via Coulomb blockade, close-to lifetime-limited linewidths, and no blinking. We observe high-fidelity optical electron-spin initialisation and long electron-spin lifetimes for these quantum dots. Our work establishes a materials platform for low-noise quantum photonics close to the red part of the spectrum.Comment: (19 pages, 12 figures, 1 table

    Optically driving the radiative Auger transition

    Get PDF
    In a radiative Auger process, optical decay is accompanied by simultaneous excitation of other carriers. The radiative Auger process gives rise to weak red-shifted satellite peaks in the optical emission spectrum. These satellite peaks have been observed over a large spectral range: in the X-ray emission of atoms; close to visible frequencies on donors in semiconductors and quantum emitters; and at infrared frequencies as shake-up lines in two-dimensional systems. So far, all the work on the radiative Auger process has focussed on detecting the spontaneous emission. However, the fact that the radiative Auger process leads to photon emission suggests that the transition can also be optically excited. In such an inverted radiative Auger process, excitation would correspond to simultaneous photon absorption and electronic de-excitation. Here, we demonstrate optical driving of the radiative Auger transition on a trion in a semiconductor quantum dot. The radiative Auger and the fundamental transition together form a Λ\Lambda-system. On driving both transitions of this Λ\Lambda-system simultaneously, we observe a reduction of the fluorescence signal by up to 70%70\%. Our results demonstrate a type of optically addressable transition connecting few-body Coulomb interactions to quantum optics. The results open up the possibility of carrying out THz spectroscopy on single quantum emitters with all the benefits of optics: coherent laser sources, efficient and fast single-photon detectors. In analogy to optical control of an electron spin, the Λ\Lambda-system between the radiative Auger and the fundamental transitions allows optical control of the emitters' orbital degree of freedom.Comment: 8 pages, 6 figure

    Charge Tunable GaAs Quantum Dots in a Photonic n-i-p Diode

    Get PDF
    In this submission, we discuss the growth of charge-controllable GaAs quantum dots embedded in an n-i-p diode structure, from the perspective of a molecular beam epitaxy grower. The QDs show no blinking and narrow linewidths. We show that the parameters used led to a bimodal growth mode of QDs resulting from low arsenic surface coverage. We identify one of the modes as that showing good properties found in previous work. As the morphology of the fabricated QDs does not hint at outstanding properties, we attribute the good performance of this sample to the low impurity levels in the matrix material and the ability of n- and p-doped contact regions to stabilize the charge state. We present the challenges met in characterizing the sample with ensemble photoluminescence spectroscopy caused by the photonic structure used. We show two straightforward methods to overcome this hurdle and gain insight into QD emission properties

    Increasing Maximum Gain in InAs Quantum Dot Lasers on GaAs and Si

    Get PDF
    InAs quantum-dot (QD) lasers emitting at 1300nm with nominally undoped and modulated p-type doping are studied. Modal-gain measurements indicate a higher gain can be achieved from the ground-state for a given Fermi-level separation with p-doping and a reduced temperature-dependence of threshold current for short-cavity lasers

    Closing-in Behavior in Mild Cognitive Impairment: An Executive Deficit

    Get PDF
    This study explored Closing-in behavior (CIB), the tendency in figure copying to draw very close to or on top of the model, in mild cognitive impairment (MCI). The files of 154 people diagnosed with MCI were reviewed and CIB was identified in 21% of cases. Two approaches were used to explore CIB. First, we capitalized on the diverse cognitive profiles within MCI, subdividing the overall sample into people with and without memory deficits. The frequency of CIB was significantly higher in multidomain non-amnestic MCI than in multidomain amnestic MCI, suggesting that CIB is not associated with specific memory impairment. Second, we assessed the cognitive correlates of CIB, by selecting patients with MCI who completed a battery of executive, visuo-constructional and memory tasks. Sub-groups of patients with and without CIB showed a similar overall severity of cognitive decline and comparable performance in visuo-constructional and memory tasks, but those with CIB were slightly but significantly more impaired on executive function tasks. The study provides evidence against memory-based accounts of CIB, and supports recent suggestions that executive impairments are the dominant cognitive correlate of this clinical sign

    Optical performance monitoring from FIR filter coefficients in coherent receivers

    Get PDF
    Abstract: We present a robust and precise optical performance monitoring technique from FIR filter coefficients in coherent receivers with digital equalization. Residual chromatic dispersion, DGD and OSNR are simultaneously estimated from measured 111 Gbit/s data

    Development of a psychiatric disorder linked to cerebellar lesions

    Get PDF
    Cerebellar dysfunction plays a critical role in neurodevelopmental disorders with long-term behavioral and neuropsychiatric symptoms. A 43-year-old woman with a cerebellum arteriovenous malformation and history of behavioral dysregulation since childhood is described. After the rupture of the cerebellar malformation in adulthood, her behavior morphed into specific psychiatric symptoms and cognitive deficits occurred. The neuropsychological assessment evidenced impaired performance in attention, visuospatial, memory, and language domains. Moreover, psychiatric assessment indicated a borderline personality disorder. Brain MRI examination detected macroscopic abnormalities in the cerebellar posterior lobules VI, VIIa (Crus I), and IX, and in the posterior area of the vermis, regions usually involved in cognitive and emotional processing. The described patient suffered from cognitive and behavioral symptoms that are part of the cerebellar cognitive affective syndrome. This case supports the hypothesis of a cerebellar role in personality disorders emphasizing the importance of also examining the cerebellum in the presence of behavioral disturbances in children and adults

    Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2

    Get PDF
    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease involving the cerebellum and characterized by a typical motor syndrome. In addition, the presence of cognitive impairment is now widely acknowledged as a feature of SCA2. Given the extensive connections between the cerebellum and associative cerebral areas, it is reasonable to hypothesize that cerebellar neurodegeneration associated with SCA2 may impact on the cerebellar modulation of the cerebral cortex, thus resulting in functional impairment. The aim of the present study was to investigate and quantitatively map the pattern of cerebellar gray matter (GM) atrophy due to SCA2 neurodegeneration and to correlate that with patients' cognitive performances. Cerebellar GM maps were extracted and compared between SCA2 patients (n = 9) and controls (n = 33) by using voxel-based morphometry. Furthermore, the relationship between cerebellar GM atrophy and neuropsychological scores of the patients was assessed. Specific cerebellar GM regions were found to be affected in patients. Additionally, GM loss in cognitive posterior lobules (VI, Crus I, Crus II, VIIB, IX) correlated with visuospatial, verbal memory and executive tasks, while additional correlations with motor anterior (V) and posterior (VIIIA, VIIIB) lobules were found for the tasks engaging motor and planning components. Our results provide evidence that the SCA2 neurodegenerative process affects the cerebellar cortex and that MRI indices of atrophy in different cerebellar subregions may account for the specificity of cognitive symptomatology observed in patients, as result of a cerebello-cerebral dysregulation
    • 

    corecore