91 research outputs found

    Transcranial direct current stimulation over multiple days improves learning and maintenance of a novel vocabulary

    Get PDF
    Introduction: Recently, growing interest emerged in the enhancement of human potential by means of non-invasive brain stimulation. In particular, anodal transcranial direct current stimulation (atDCS) has been shown to exert beneficial effects on motor and higher cognitive functions. However, the majority of transcranial direct current stimulation (tDCS) studies have assessed effects of single stimulation sessions that are mediated by transient neural modulation. Studies assessing the impact of multiple stimulation sessions on learning that may induce long-lasting behavioural and neural changes are scarce and have not yet been accomplished in the language domain in healthy individuals

    Effects of Transcranial Direct Current Stimulation on Episodic Memory Related to Emotional Visual Stimuli

    Get PDF
    The present study investigated emotional memory following bilateral transcranial electrical stimulation (direct current of 1 mA, for 20 minutes) over fronto-temporal cortical areas of healthy participants during the encoding of images that differed in affective arousal and valence. The main result was a significant interaction between the side of anodal stimulation and image emotional valence. Specifically, right anodal/left cathodal stimulation selectively facilitated the recall of pleasant images with respect to both unpleasant and neutral images whereas left anodal/right cathodal stimulation selectively facilitated the recall of unpleasant images with respect to both pleasant and neutral images. From a theoretical perspective, this double dissociation between the side of anodal stimulation and the advantage in the memory performance for a specific type of stimulus depending on its pleasantness supported the specific-valence hypothesis of emotional processes, which assumes a specialization of the right hemisphere in processing unpleasant stimuli and a specialization of the left hemisphere in processing pleasant stimuli. From a methodological point of view, first we found tDCS effects strictly dependent on the stimulus category, and second a pattern of results in line with an interfering and inhibitory account of anodal stimulation on memory performance. These findings need to be carefully considered in applied contexts, such as the rehabilitation of altered emotional processing or eye-witness memory, and deserve to be further investigated in order to understand their underlying mechanisms of action

    Facilitate Insight by Non-Invasive Brain Stimulation

    Get PDF
    Our experiences can blind us. Once we have learned to solve problems by one method, we often have difficulties in generating solutions involving a different kind of insight. Yet there is evidence that people with brain lesions are sometimes more resistant to this so-called mental set effect. This inspired us to investigate whether the mental set effect can be reduced by non-invasive brain stimulation. 60 healthy right-handed participants were asked to take an insight problem solving task while receiving transcranial direct current stimulation (tDCS) to the anterior temporal lobes (ATL). Only 20% of participants solved an insight problem with sham stimulation (control), whereas 3 times as many participants did so (p = 0.011) with cathodal stimulation (decreased excitability) of the left ATL together with anodal stimulation (increased excitability) of the right ATL. We found hemispheric differences in that a stimulation montage involving the opposite polarities did not facilitate performance. Our findings are consistent with the theory that inhibition to the left ATL can lead to a cognitive style that is less influenced by mental templates and that the right ATL may be associated with insight or novel meaning. Further studies including neurophysiological imaging are needed to elucidate the specific mechanisms leading to the enhancement

    Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence

    Get PDF
    The present study demonstrates that tDCS can alter WM performance by modulating the underlying neural oscillations. This result can be considered an important step towards a better understanding of the mechanisms involved in tDCS-induced modulations of WM performance, which is of particular importance, given the proposal to use electrical brain stimulation for the therapeutic treatment of memory deficits in clinical settings
    corecore