1,273 research outputs found
Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams
We consider preprocessing a set of points in convex position in the
plane into a data structure supporting queries of the following form: given a
point and a directed line in the plane, report the point of that
is farthest from (or, alternatively, nearest to) the point among all points
to the left of line . We present two data structures for this problem.
The first data structure uses space and preprocessing
time, and answers queries in time, for any . The second data structure uses space and
polynomial preprocessing time, and answers queries in time. These
are the first solutions to the problem with query time and
space.
The second data structure uses a new representation of nearest- and
farthest-point Voronoi diagrams of points in convex position. This
representation supports the insertion of new points in clockwise order using
only amortized pointer changes, in addition to -time
point-location queries, even though every such update may make
combinatorial changes to the Voronoi diagram. This data structure is the first
demonstration that deterministically and incrementally constructed Voronoi
diagrams can be maintained in amortized pointer changes per operation
while keeping -time point-location queries.Comment: 17 pages, 6 figures. Various small improvements. To appear in
Algorithmic
Stresses in isostatic granular systems and emergence of force chains
Progress is reported on several questions that bedevil understanding of
granular systems: (i) are the stress equations elliptic, parabolic or
hyperbolic? (ii) how can the often-observed force chains be predicted from a
first-principles continuous theory? (iii) How to relate insight from isostatic
systems to general packings? Explicit equations are derived for the stress
components in two dimensions including the dependence on the local structure.
The equations are shown to be hyperbolic and their general solutions, as well
as the Green function, are found. It is shown that the solutions give rise to
force chains and the explicit dependence of the force chains trajectories and
magnitudes on the local geometry is predicted. Direct experimental tests of the
predictions are proposed. Finally, a framework is proposed to relate the
analysis to non-isostatic and more realistic granular assemblies.Comment: 4 pages, 2 figures, Corrected typos and clkearer text, submitted to
Phys. Rev. Let
Stress in frictionless granular material: Adaptive Network Simulations
We present a minimalistic approach to simulations of force transmission
through granular systems. We start from a configuration containing cohesive
(tensile) contact forces and use an adaptive procedure to find the stable
configuration with no tensile contact forces. The procedure works by
sequentially removing and adding individual contacts between adjacent beads,
while the bead positions are not modified. In a series of two-dimensional
realizations, the resulting force networks are shown to satisfy a linear
constraint among the three components of average stress, as anticipated by
recent theories. The coefficients in the linear constraint remain nearly
constant for a range of shear loadings up to about .6 of the normal loading.
The spatial distribution of contact forces shows strong concentration along
``force chains". The probability of contact forces of magnitude f shows an
exponential falloff with f. The response to a local perturbing force is
concentrated along two characteristic rays directed downward and laterally.Comment: 8 pages, 8 figure
Development of Stresses in Cohesionless Poured Sand
The pressure distribution beneath a conical sandpile, created by pouring sand
from a point source onto a rough rigid support, shows a pronounced minimum
below the apex (`the dip'). Recent work of the authors has attempted to explain
this phenomenon by invoking local rules for stress propagation that depend on
the local geometry, and hence on the construction history, of the medium. We
discuss the fundamental difference between such approaches, which lead to
hyperbolic differential equations, and elastoplastic models, for which the
equations are elliptic within any elastic zones present .... This displacement
field appears to be either ill-defined, or defined relative to a reference
state whose physical existence is in doubt. Insofar as their predictions depend
on physical factors unknown and outside experimental control, such
elastoplastic models predict that the observations should be intrinsically
irreproducible .... Our hyperbolic models are based instead on a physical
picture of the material, in which (a) the load is supported by a skeletal
network of force chains ("stress paths") whose geometry depends on construction
history; (b) this network is `fragile' or marginally stable, in a sense that we
define. .... We point out that our hyperbolic models can nonetheless be
reconciled with elastoplastic ideas by taking the limit of an extremely
anisotropic yield condition.Comment: 25 pages, latex RS.tex with rspublic.sty, 7 figures in Rsfig.ps.
Philosophical Transactions A, Royal Society, submitted 02/9
A kilobit hidden SNFS discrete logarithm computation
We perform a special number field sieve discrete logarithm computation in a
1024-bit prime field. To our knowledge, this is the first kilobit-sized
discrete logarithm computation ever reported for prime fields. This computation
took a little over two months of calendar time on an academic cluster using the
open-source CADO-NFS software. Our chosen prime looks random, and
has a 160-bit prime factor, in line with recommended parameters for the Digital
Signature Algorithm. However, our p has been trapdoored in such a way that the
special number field sieve can be used to compute discrete logarithms in
, yet detecting that p has this trapdoor seems out of reach.
Twenty-five years ago, there was considerable controversy around the
possibility of back-doored parameters for DSA. Our computations show that
trapdoored primes are entirely feasible with current computing technology. We
also describe special number field sieve discrete log computations carried out
for multiple weak primes found in use in the wild. As can be expected from a
trapdoor mechanism which we say is hard to detect, our research did not reveal
any trapdoored prime in wide use. The only way for a user to defend against a
hypothetical trapdoor of this kind is to require verifiably random primes
Role of prostaglandins and specific place in therapy of bimatoprost in the treatment of elevated intraocular pressure and ocular hypertension: A closer look at the agonist properties of bimatoprost and the prostamides
Bimatoprost is the only representative of a novel class of prostaglandin ethanolamide (prostamide) compounds used therapeutically as an efficacious treatment for glaucoma. The pathways through which bimatoprost works to improve uveoscleral outflow to relieve elevated intraocular pressure are similar to those of the conventional prostaglandins used in glaucoma therapy, with some evidence of a preferential action at the trabecular meshwork. The pharmacology of bimatoprost is however, unclear. Pharmacological evidence supports a specific and distinct receptor-mediated agonist activity of bimatoprost at ‘prostamide’ receptors, which is selective to the prostamides as a class. However, other studies have reported either activity of bimatoprost at additional prostanoid and nonprostanoid receptors, or a conversion of bimatoprost to metabolites with agonist activity at prostaglandin FP receptors in the human eye. The formation of endogenous prostamides has been demonstrated in vivo, by a novel pathway involving the cyclooxygenase-2-mediated conversion of endogenous cannabinoid (endocannabinoid) substrates. Irrespective of the pharmacology of bimatoprost and the prostamides in general, further studies are needed to determine the biological role and biochemical pathology of prostamides in the human eye, particularly in glaucoma. Such studies may improve our understanding of uveoscleral flow and may offer new treatments for controlling intraocular pressure
Physiological responses to folate overproduction in lactobacillys plantarum WCFS1.
<p>Abstract</p> <p>Background</p> <p>Using a functional genomics approach we addressed the impact of folate overproduction on metabolite formation and gene expression in <it>Lactobacillus plantarum </it>WCFS1. We focused specifically on the mechanism that reduces growth rates in folate-overproducing cells.</p> <p>Results</p> <p>Metabolite formation and gene expression were determined in a folate-overproducing- and wild-type strain. Differential metabolomics analysis of intracellular metabolite pools indicated that the pool sizes of 18 metabolites differed significantly between these strains. The gene expression profile was determined for both strains in pH-regulated chemostat culture and batch culture. Apart from the expected overexpression of the 6 genes of the folate gene cluster, no other genes were found to be differentially expressed both in continuous and batch cultures. The discrepancy between the low transcriptome and metabolome response and the 25% growth rate reduction of the folate overproducing strain was further investigated. Folate production per se could be ruled out as a contributing factor, since in the absence of folate production the growth rate of the overproducer was also reduced by 25%. The higher metabolic costs for DNA and RNA biosynthesis in the folate overproducing strain were also ruled out. However, it was demonstrated that folate-specific mRNAs and proteins constitute 8% and 4% of the total mRNA and protein pool, respectively.</p> <p>Conclusion</p> <p>Folate overproduction leads to very little change in metabolite levels or overall transcript profile, while at the same time the growth rate is reduced drastically. This shows that <it>Lactobacillus plantarum </it>WCFS1 is unable to respond to this growth rate reduction, most likely because the growth-related transcripts and proteins are diluted by the enormous amount of gratuitous folate-related transcripts and proteins.</p
Study of shock waves generation, hot electron production and role of parametric instabilities in an intensity regime relevant for the shock ignition
We present experimental results at intensities relevant to Shock Ignition
obtained at the sub-ns Prague Asterix Laser System in 2012 . We studied shock waves
produced by laser-matter interaction in presence of a pre-plasma. We used a first beam at
1ω (1315 nm) at 7 × 10 13 W/cm 2 to create a pre-plasma on the front side of the target and
a second at 3ω (438 nm) at ∼ 10 16 W/cm 2 to create the shock wave. Multilayer targets
composed of 25 (or 40 μm) of plastic (doped with Cl), 5 μm of Cu (for Kα diagnostics)
and 20 μm of Al for shock measurement were used. We used X-ray spectroscopy of Cl
to evaluate the plasma temperature, Kα imaging and spectroscopy to evaluate spatial and
spectral properties of the fast electrons and a streak camera for shock breakout measurements.
Parametric instabilities (Stimulated Raman Scattering, Stimulated Brillouin Scattering and
Two Plasmon Decay) were studied by collecting the back scattered light and analysing its
spectrum. Back scattered energy was measured with calorimeters. To evaluate the maximum
pressure reached in our experiment we performed hydro simulations with CHIC and DUED
codes. The maximum shock pressure generated in our experiment at the front side of the
target during laser-interaction is 90 Mbar. The conversion efficiency into hot electrons was
estimated to be of the order of ∼ 0.1% and their mean energy in the order ∼50 keV.
Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distributio
Static avalanches and Giant stress fluctuations in Silos
We propose a simple model for arch formation in silos. We show that small
pertubations (such as the thermal expansion of the beads) may lead to giant
stress fluctuations on the bottom plate of the silo. The relative amplitude
of these fluctuations are found to be power-law distributed, as
, . These fluctuations are related to large
scale `static avalanches', which correspond to long-range redistributions of
stress paths within the silo.Comment: 10 pages, 4 figures.p
Stress Propagation through Frictionless Granular Material
We examine the network of forces to be expected in a static assembly of hard,
frictionless spherical beads of random sizes, such as a colloidal glass. Such
an assembly is minimally connected: the ratio of constraint equations to
contact forces approaches unity for a large assembly. However, the bead
positions in a finite subregion of the assembly are underdetermined. Thus to
maintain equilibrium, half of the exterior contact forces are determined by the
other half. We argue that the transmission of force may be regarded as
unidirectional, in contrast to the transmission of force in an elastic
material. Specializing to sequentially deposited beads, we show that forces on
a given buried bead can be uniquely specified in terms of forces involving more
recently added beads. We derive equations for the transmission of stress
averaged over scales much larger than a single bead. This derivation requires
the Ansatz that statistical fluctuations of the forces are independent of
fluctuations of the contact geometry. Under this Ansatz, the
-component stress field can be expressed in terms of a d-component
vector field. The procedure may be generalized to non-sequential packings. In
two dimensions, the stress propagates according to a wave equation, as
postulated in recent work elsewhere. We demonstrate similar wave-like
propagation in higher dimensions, assuming that the packing geometry has
uniaxial symmetry. In macroscopic granular materials we argue that our approach
may be useful even though grains have friction and are not packed
sequentially.=17Comment: 15 pages, 4 figures, revised vertion for Phys. Rev.
- …
