775 research outputs found
New Structure In The Shapley Supercluster
We present new radial velocities for 189 galaxies in a 91 sq. deg region of
the Shapley supercluster measured with the FLAIR-II spectrograph on the UK
Schmidt Telescope. The data reveal two sheets of galaxies linking the major
concentrations of the supercluster. The supercluster is not flattened in
Declination as was suggested previously and it may be at least 30 percent
larger than previously thought with a correspondingly larger contribution to
the motion of the Local Group.Comment: LaTex: 2 pages, 1 figure, includes conf_iap.sty style file. To appear
in proceedings of The 14th IAP Colloquium: Wide Field Surveys in Cosmology,
held in Paris, 1998 May 26--30, eds. S.Colombi, Y.Mellie
Unveiling hidden structures in the Coma cluster
We have assembled a large data-set of 613 galaxy redshifts in the Coma
cluster, the largest presently available for a cluster of galaxies. We have
defined a sample of cluster members complete to b, using a
membership criterion based on the galaxy velocity, when available, or on the
galaxy magnitude and colour, otherwise. Such a data set allows us to define
nearly complete samples within a region of 1~\Mpc\ radius, with a sufficient
number of galaxies per sample to make statistical analyses possible. Using this
sample and the {\em ROSAT} PSPC X--ray image of the cluster, we have
re-analyzed the structure and kinematics of Coma, by applying the wavelet and
adaptive kernel techniques. A striking coincidence of features is found in the
distributions of galaxies and hot intracluster gas. The two central dominant
galaxies, NGC4874 and NGC4889, are surrounded by two galaxy groups, mostly
populated with galaxies brighter than b and well separated in
velocity space. On the contrary, the fainter galaxies tend to form a single
smooth structure with a central peak coinciding in position with a secondary
peak detected in X--rays, and located between the two dominant galaxies; we
suggest to identify this structure with the main body of the Coma cluster. A
continuous velocity gradient is found in the central distribution of these
faint galaxies, a probable signature of tidal interactions rather than
rotation. There is evidence for a bound population of bright galaxies around
other brightest cluster members. Altogether, the Coma cluster structure seems
to be better traced by the faint galaxy population, the bright galaxies being
located in subclusters. We discuss this evidence in terms of an ongoing
accretion of groups onto the cluster.Comment: to appear in A&A, 19 pages, uuencoded gzipped postscript fil
On the galaxy luminosity function in the central regions of the Coma cluster
We have obtained new redshifts for 265 objects in the central
48~~25~arcmin region of the Coma cluster. When supplemented with
literature data, our redshift sample is 95~\% complete up to a magnitude
b=18.0 (the magnitudes are taken from the photometric sample of Godwin
et al. 1983). Using redshift-confirmed membership for 205 galaxies, and the
location in the colour-magnitude diagram for another 91 galaxies, we have built
a sample of cluster members which is complete up to b=20.0. We show
that the Coma cluster luminosity function cannot be adequately fitted by a
single Schechter (1976) function, because of a dip in the magnitude
distribution at b17. The superposition of an Erlang (or a Gauss)
and a Schechter function provides a significantly better fit. We compare the
luminosity function of Coma to those of other clusters, and of the field.
Luminosity functions for rich clusters look similar, with a maximum at , while the Virgo and the field luminosity
functions show a nearly monotonic behaviour. These differences may be produced
by physical processes related to the environment which affect the luminosities
of a certain class of cluster galaxies.Comment: 7 pages, uuencoded postscript file (figures included) Accepted for
publication on A&
A Population of Compact Elliptical Galaxies Detected with the Virtual Observatory
Compact elliptical galaxies are characterized by small sizes and high stellar
densities. They are thought to form through tidal stripping of massive
progenitors. However, only a handful of them were known, preventing us from
understanding the role played by this mechanism in galaxy evolution. We present
a population of 21 compact elliptical galaxies gathered with the Virtual
Observatory. Follow-up spectroscopy and data mining, using high-resolution
images and large databases, show that all the galaxies exhibit old metal-rich
stellar populations different from those of dwarf elliptical galaxies of
similar masses but similar to those of more massive early-type galaxies,
supporting the tidal stripping scenario. Their internal properties are
reproduced by numerical simulations, which result in compact dynamically hot
remnants resembling the galaxies in our sample.Comment: 26 pages, 5 figures, 2 tables. Science in press, published in Science
Express on 1/Oct/2009. Full resolution figures in the supplementary online
material are available from the Science Magazine web-sit
Spectral Properties of Holstein and Breathing Polarons
We calculate the spectral properties of the one-dimensional Holstein and
breathing polarons using the self-consistent Born approximation. The Holstein
model electron-phonon coupling is momentum independent while the breathing
coupling increases monotonically with the phonon momentum. We find that for a
linear or tight binding electron dispersion: i) for the same value of the
dimensionless coupling the quasiparticle renormalization at small momentum in
the breathing polaron is much smaller, ii) the quasiparticle renormalization at
small momentum in the breathing polaron increases with phonon frequency unlike
in the Holstein model where it decreases, iii) in the Holstein model the
quasiparticle dispersion displays a kink and a small gap at an excitation
energy equal to the phonon frequency w0 while in the breathing model it
displays two gaps, one at excitation energy w0 and another one at 2w0. These
differences have two reasons: first, the momentum of the relevant scattered
phonons increases with increasing polaron momentum and second, the breathing
bare coupling is an increasing function of the phonon momentum. These result in
an effective electron-phonon coupling for the breathing model which is an
increasing function of the total polaron momentum, such that the small momentum
polaron is in the weak coupling regime while the large momentum one is in the
strong coupling regime. However the first reason does not hold if the free
electron dispersion has low energy states separated by large momentum, as in a
higher dimensional system for example, in which situation the difference
between the two models becomes less significant.Comment: 11 pages, 10 figure
Pancreatic cysts suspected to be branch duct intraductal papillary mucinous neoplasm without concerning features have low risk for development of pancreatic cancer.
BackgroundThe risk of developing pancreatic cancer is uncertain in patients with clinically suspected branch duct intraductal papillary mucinous neoplasm (BD-IPMN) based on the "high-risk stigmata" or "worrisome features" criteria proposed in the 2012 international consensus guidelines ("Fukuoka criteria").MethodsRetrospective case series involving patients referred for endoscopic ultrasound (EUS) of indeterminate pancreatic cysts with clinical and EUS features consistent with BD-IPMN. Rates of pancreatic cancer occurring at any location in the pancreas were compared between groups of patients with one or more Fukuoka criteria ("Highest-Risk Group", HRG) and those without these criteria ("Lowest-Risk Group", LRG).ResultsAfter exclusions, 661 patients comprised the final cohort (250 HRG and 411 LRG patients), 62% female with an average age of 67 years and 4 years of follow up. Pancreatic cancer, primarily adenocarcinoma, occurred in 60 patients (59 HRG, 1 LRG). Prevalent cancers diagnosed during EUS, immediate surgery, or first year of follow up were found in 48/661 (7.3%) of cohort and exclusively in HRG (33/77, 42.3%). Using Kaplan-Meier method, the cumulative incidence of cancer at 7 years was 28% in HRG and 1.2% in LRG patients (P<0.001).ConclusionsThis study supports using Fukuoka criteria to stratify the immediate and long-term risks of pancreatic cancer in presumptive BD-IPMN. The risk of pancreatic cancer was highest during the first year and occurred exclusively in those with "high-risk stigmata" or "worrisome features" criteria. After the first year all BD-IPMN continued to have a low but persistent cancer risk
Environmental effects on the Coma cluster luminosity function
Using our catalogue of V_{26.5} isophotal magnitudes for 6756 galaxies in a region covering 60~\times~25~arcmin^2 in the center of the Coma cluster, plus 267 galaxies in a region of 9.7~\times~9.4~arcmin^2 around NGC~4839, we derive the luminosity function in the magnitude range 13.5\leq V_{26.5} < 21.0 (corresponding to the absolute magnitude range -22.24 < M_{V26.5} \leq -14.74). The luminosity function for this region is well fitted by the combination of a gaussian in its bright part and of a steep Schechter function (of index \alpha =-1.8) in its faint part. Luminosity functions derived for individual regions surrounding the brightest galaxies show less steep slopes, strongly suggesting the existence of environmental effects. The implications of such effects and galaxy formation scenarios are discussed
When the optimal is not the best: parameter estimation in complex biological models
Background: The vast computational resources that became available during the
past decade enabled the development and simulation of increasingly complex
mathematical models of cancer growth. These models typically involve many free
parameters whose determination is a substantial obstacle to model development.
Direct measurement of biochemical parameters in vivo is often difficult and
sometimes impracticable, while fitting them under data-poor conditions may
result in biologically implausible values.
Results: We discuss different methodological approaches to estimate
parameters in complex biological models. We make use of the high computational
power of the Blue Gene technology to perform an extensive study of the
parameter space in a model of avascular tumor growth. We explicitly show that
the landscape of the cost function used to optimize the model to the data has a
very rugged surface in parameter space. This cost function has many local
minima with unrealistic solutions, including the global minimum corresponding
to the best fit.
Conclusions: The case studied in this paper shows one example in which model
parameters that optimally fit the data are not necessarily the best ones from a
biological point of view. To avoid force-fitting a model to a dataset, we
propose that the best model parameters should be found by choosing, among
suboptimal parameters, those that match criteria other than the ones used to
fit the model. We also conclude that the model, data and optimization approach
form a new complex system, and point to the need of a theory that addresses
this problem more generally
- …
