1,859 research outputs found

    Exploring Packaging Strategies of Nano-embedded Thermoelectric Generators

    Full text link
    Embedding nanostructures within a bulk matrix is an important practical approach towards the electronic engineering of high performance thermoelectric systems. For power generation applications, it ideally combines the efficiency benefit offered by low dimensional systems along with the high power output advantage offered by bulk systems. In this work, we uncover a few crucial details about how to embed nanowires and nanoflakes in a bulk matrix so that an overall advantage over pure bulk may be achieved. First and foremost, we point out that a performance degradation with respect to bulk is inevitable as the nanostructure transitions to being multi moded. It is then shown that a nano embedded system of suitable cross-section offers a power density advantage over a wide range of efficiencies at higher packing fractions, and this range gradually narrows down to the high efficiency regime, as the packing fraction is reduced. Finally, we introduce a metric - \emph{the advantage factor}, to elucidate quantitatively, the enhancement in the power density offered via nano-embedding at a given efficiency. In the end, we explore the maximum effective width of nano-embedding which serves as a reference in designing generators in the efficiency range of interest.Comment: 10 pages, 8 figure

    Temperature enhanced persistent currents and "ϕ0/2\phi_0/2 periodicity"

    Full text link
    We predict a non-monotonous temperature dependence of the persistent currents in a ballistic ring coupled strongly to a stub in the grand canonical as well as in the canonical case. We also show that such a non-monotonous temperature dependence can naturally lead to a ϕ0/2\phi_0/2 periodicity of the persistent currents, where ϕ0\phi_0=h/e. There is a crossover temperature TT^*, below which persistent currents increase in amplitude with temperature while they decrease above this temperature. This is in contrast to persistent currents in rings being monotonously affected by temperature. TT^* is parameter-dependent but of the order of Δu/π2kB\Delta_u/\pi^2k_B, where Δu\Delta_u is the level spacing of the isolated ring. For the grand-canonical case TT^* is half of that for the canonical case.Comment: some typos correcte

    Persistent currents in coupled mesoscopic rings

    Get PDF
    We have analysed the nature of persistent currents in open coupled mesoscopic rings. Our system is comprised of two ideal loops connected to an electron reservoir. We have obtained analytical expressions for the persistent current densities in two rings in the presence of a magnetic field. We show that the known even-odd parity effects in isolated single loops have to be generalised for the case of coupled rings. We also show that when the two rings have unequal circumferences, it is possible to observe opposite currents (diamagnetic or paramagnetic) in the two rings for a given Fermi level.Comment: Submitted to PRB. 9 figures availabel on reques

    Persistent Currents in the Presence of a Transport Current

    Get PDF
    We have considered a system of a metallic ring coupled to two electron reservoirs. We show that in the presence of a transport current, the persistent current can flow in a ring, even in the absence of magnetic field. This is purely a quantum effect and is related to the current magnification in the loop. These persistent currents can be observed if one tunes the Fermi energy near the antiresonances of the total transmission coefficient or the two port conductance.Comment: To appear in Phys. Rev. B. Three figures available on reques

    NON-LINEAR REGRESSION ANALYSIS IN UPFLOW ANAEROBIC SLUDGE BLANKET REACTOR

    Get PDF
    A dimensionless approach was used to model the granule size variation in upflow anaerobic sludge blanket (UASB) reactor under different operating condition like organic loading rate, operating time, gas production rate, volatile suspended solids, suspended solids, upflow velocity, polymer loading, sludge volume index and effluent COD concentrations. Present study examines mathematically the effect of introducing polymers to enhance the granule size development in a UASB reactor especially in treatment of low strength wastewater in UASB reactor. The experimental results of investigators on different operating conditions were collected and subjected to dimensionless and non-linear regression analysis to model the enhancement of granule size in UASB reactor. The results using the dimensionless approach and the non linear regression show that better prediction of granule size variations for the data set based on the statistical estimates, errors and a satisfactory coefficient of determination (R2-values). The dimensionless approach of the present study can be successfully used to predict the granule size variations in UASB reactor

    Stochastic growth equations on growing domains

    Full text link
    The dynamics of linear stochastic growth equations on growing substrates is studied. The substrate is assumed to grow in time following the power law tγt^\gamma, where the growth index γ\gamma is an arbitrary positive number. Two different regimes are clearly identified: for small γ\gamma the interface becomes correlated, and the dynamics is dominated by diffusion; for large γ\gamma the interface stays uncorrelated, and the dynamics is dominated by dilution. In this second regime, for short time intervals and spatial scales the critical exponents corresponding to the non-growing substrate situation are recovered. For long time differences or large spatial scales the situation is different. Large spatial scales show the uncorrelated character of the growing interface. Long time intervals are studied by means of the auto-correlation and persistence exponents. It becomes apparent that dilution is the mechanism by which correlations are propagated in this second case.Comment: Published versio

    Heat Capacity of Mesoscopic Superconducting Disks

    Full text link
    We study the heat capacity of isolated giant vortex states, which are good angular momentum (LL) states, in a mesoscopic superconducting disk using the Ginzburg-Landau (GL) theory. At small magnetic fields the LL=0 state qualitatively behaves like the bulk sample characterized by a discontinuity in heat capacity at TcT_c. As the field is increased the discontinuity slowly turns into a continuous change which is a finite size effect. The higher LL states show a continuous change in heat capacity at TcT_c at all fields. We also show that for these higher LL states, the behavior of the peak position with change in field is related to the paramagnetic Meissner effect (irreversible) and can lead to an unambiguous observation of positive magnetization in mesoscopic superconductors.Comment: Final versio
    corecore