207 research outputs found

    Q-Value and Half-Lives for the Double-Beta-Decay Nuclide 110Pd

    Full text link
    The 110Pd double-beta decay Q-value was measured with the Penning-trap mass spectrometer ISOLTRAP to be Q = 2017.85(64) keV. This value shifted by 14 keV compared to the literature value and is 17 times more precise, resulting in new phase-space factors for the two-neutrino and neutrinoless decay modes. In addition a new set of the relevant matrix elements has been calculated. The expected half-life of the two-neutrino mode was reevaluated as 1.5(6) E20 yr. With its high natural abundance, the new results reveal 110Pd to be an excellent candidate for double-beta decay studies

    The Single State Dominance Hypothesis and the Two-Neutrino Double Beta Decay of Mo100

    Full text link
    The hypothesis of the single state dominance (SSD) in the calculation of the two-neutrino double beta decay of Mo100 is tested by exact consideration of the energy denominators of the perturbation theory. Both transitions to the ground state as well as to the 0+ and 2+ excited states of the final nucleus Ru100 are considered. We demonstrate, that by experimental investigation of the single electron energy distribution and the angular correlation of the outgoing electrons, the SSD hypothesis can be confirmed or ruled out by a precise two-neutrino double beta decay measurement (e.g. by NEMO III collaboration).Comment: 13 pages, RevTex, 1 figur

    Nuclear matrix element for two neutrino double beta decay from 136Xe

    Full text link
    The nuclear matrix element for the two neutrino double beta decay (DBD) of 136Xe was evaluated by FSQP (Fermi Surface Quasi Particle model), where experimental GT strengths measured by the charge exchange reaction and those by the beta decay rates were used. The 2 neutrino DBD matrix element is given by the sum of products of the single beta matrix elements via low-lying (Fermi Surface) quasi-particle states in the intermediate nucleus. 136Xe is the semi-magic nucleus with the closed neutron-shell, and the beta + transitions are almost blocked. Thus the 2 neutrino DBD is much suppressed. The evaluated 2 neutrino DBD matrix element is consistent with the observed value.Comment: 7 pages 6 figure

    Multiple CP non-conserving mechanisms of (\u3b2\u3b2)0\u3bd -decay and nuclei with largely different nuclear matrix elements

    Get PDF
    We investigate the possibility to discriminate between different pairs of CP non-conserving mechanisms inducing the neutrinoless double beta (\u3b2\u3b2)0\u3bd -decay by using data on (\u3b2\u3b2) 0\u3bd -decay half-lives of nuclei with largely different nuclear matrix elements (NMEs). The mechanisms studied are: light Majorana neutrino exchange, heavy left-handed (LH) and heavy right-handed (RH) Majorana neutrino exchanges, lepton charge non-conserving couplings in SUSY theories with R-parity breaking giving rise to the "dominant gluino exchange" and the "squark-neutrino" mechanisms. The nuclei considered are 76Ge, 82Se, 100Mo, 130Te and 136Xe. Four sets of nuclear matrix elements (NMEs) of the decays of these five nuclei, derived within the Self-consistent Renormalized Quasiparticle Random Phase Approximation (SRQRPA), were employed in our analysis. While for each of the five single mechanisms discussed, the NMEs for 76Ge, 82Se, 100Mo and 130Te differ relatively little, the relative difference between the NMEs of any two nuclei not exceeding 10%, the NMEs for 136 Xe differ significantly from those of 76Ge, 82 Se, 100Mo and 130Te, being by a factor ~ (1.3 - 2.5) smaller. This allows, in principle, to draw conclusions about the pair of non-interfering (interfering) mechanisms possibly inducing the (\u3b2\u3b2)0\u3bd -decay from data on the half-lives of 136 Xe and of at least one (two) more isotope(s) which can be, e.g., any of the four, 76 Ge, 82 Se, 100 Mo and 130 Te. Depending on the sets of mechanisms considered, the conclusion can be independent of, or can depend on, the NMEs used in the analysis. The implications of the EXO lower bound on the half-life of 136 Xe for the problem studied are also exploited. \ua9 2013 SISSA, Trieste, Italy

    Neutrino statistics and big bang nucleosynthesis

    Full text link
    Neutrinos may possibly violate the spin-statistics theorem, and hence obey Bose statistics or mixed statistics despite having spin half. We find the generalized equilibrium distribution function of neutrinos which depends on a single fermi-bose parameter, \kappa, and interpolates continuously between the bosonic and fermionic distributions when \kappa changes from -1 to +1. We consider modification of the Big Bang Nucleosynthesis (BBN) in the presence of bosonic or partly bosonic neutrinos. For pure bosonic neutrinos the abundances change (in comparison with the usual Fermi-Dirac case) by -3.2% for 4He (which is equivalent to a decrease of the effective number of neutrinos by \Delta N_\nu = - 0.6), +2.6% for 2H and -7% for 7Li. These changes provide a better fit to the BBN data. Future BBN studies will be able to constrain the fermi-bose parameter to \kappa > 0.5, if no deviation from fermionic nature of neutrinos is found. We also evaluate the sensitivity of future CMB and LSS observations to the fermi-bose parameter.Comment: 11 pages, 3 figures, matches version in JCAP, discussion and references extended slightl

    Neutrinoless double beta decay in seesaw models

    Full text link
    We study the general phenomenology of neutrinoless double beta decay in seesaw models. In particular, we focus on the dependence of the neutrinoless double beta decay rate on the mass of the extra states introduced to account for the Majorana masses of light neutrinos. For this purpose, we compute the nuclear matrix elements as functions of the mass of the mediating fermions and estimate the associated uncertainties. We then discuss what can be inferred on the seesaw model parameters in the different mass regimes and clarify how the contribution of the light neutrinos should always be taken into account when deriving bounds on the extra parameters. Conversely, the extra states can also have a significant impact, cancelling the Standard Model neutrino contribution for masses lighter than the nuclear scale and leading to vanishing neutrinoless double beta decay amplitudes even if neutrinos are Majorana particles. We also discuss how seesaw models could reconcile large rates of neutrinoless double beta decay with more stringent cosmological bounds on neutrino masses.Comment: 34 pages, 5 eps figures and 1 axodraw figure. Final version published in JHEP. NME results available in Appendi

    Investigation of double beta decay with the NEMO-3 detector

    Full text link
    The double beta decay experiment NEMO~3 has been taking data since February 2003. The aim of this experiment is to search for neutrinoless (0νββ0\nu\beta\beta) decay and investigate two neutrino double beta decay in seven different isotopically enriched samples (100^{100}Mo, 82^{82}Se, 48^{48}Ca, 96^{96}Zr, 116^{116}Cd, 130^{130}Te and 150^{150}Nd). After analysis of the data corresponding to 3.75 y, no evidence for 0νββ0\nu\beta\beta decay in the 100^{100}Mo and 82^{82}Se samples was found. The half-life limits at the 90% C.L. are 1.1⋅10241.1\cdot 10^{24} y and 3.6⋅10233.6\cdot 10^{23} y, respectively. Additionally for 0νββ0\nu\beta\beta decay the following limits at the 90% C.L. were obtained, >1.3⋅1022> 1.3 \cdot 10^{22} y for 48^{48}Ca, >9.2⋅1021> 9.2 \cdot 10^{21} y for 96^{96}Zr and >1.8⋅1022> 1.8 \cdot 10^{22} y for 150^{150}Nd. The 2νββ2\nu\beta\beta decay half-life values were precisely measured for all investigated isotopes.Comment: 12 pages, 4 figures, 5 tables; talk at conference on "Fundamental Interactions Physics" (ITEP, Moscow, November 23-27, 2009
    • …
    corecore