2,431 research outputs found
Jet-induced modifications of the characteristic of the bulk nuclear matter
We present our studies on jet-induced modifications of the characteristic of
the bulk nuclear matter. To describe such a matter, we use efficient
relativistic hydrodynamic simulations in (3+1) dimensions employing the
Graphics Processing Unit (GPU) in the parallel programming framework. We use
Cartesian coordinates in the calculations to ensure a high spatial resolution
that is constant throughout the evolution of the system. We show our results on
how jets modify the hydrodynamics fields and discuss the implications.Comment: 2 pages, 3 figures, SQM2015 proceedings submitted to Journal of
Physics: Conference Series (JPCS) - IOP Conference Serie
The Analysis of Large Order Bessel Functions in Gravitational Wave Signals from Pulsars
In this work, we present the analytic treatment of the large order Bessel
functions that arise in the Fourier Transform (FT) of the Gravitational Wave
(GW) signal from a pulsar. We outline several strategies which employ
asymptotic expansions in evaluation of such Bessel functions which also happen
to have large argument. Large order Bessel functions also arise in the
Peters-Mathews model of binary inspiralling stars emitting GW and several
problems in potential scattering theory. Other applications also arise in a
variety of problems in Applied Mathematics as well as in the Natural Sciences
and present a challenge for High Performance Computing(HPC).Comment: 8 pages, Uses IEEE style files: Ieee.cls, Ieee.clo and floatsty.sty.
Accepted for publication in High Performance Computing Symposium, May 15-18
(HPCS 2005) Guelph, Ontario, Canad
Physicochemical and microbiological characteristics of kitoza, a traditional salted/dried/smoked meat product of Madagascar
Kitoza samples collected from producers in Madagascar were analyzed for their physicochemical and microbial properties. Lactic acid bacteria and coagulase‐negative staphylococci were the two codominant populations with average counts of 6–7 log cfu/g. Good hygienic practices were sometimes lacking but samples were not contaminated with Salmonella, Clostridium perfringens, and Bacillus cereus and only once with Listeria monocytogenes. Staphylococcus aureus was found occasionally with higher counts in salted/dried products than in salted/smoked products. Moisture, protein, fat, and salt contents varied considerably and were on average 41.5, 43.5, 14.3, and 3.3 g/100 g, respectively, and water activity was 0.893 on average. Smoked kitoza showed higher moisture content compared to dried kitoza. Most of the smoked kitoza had a water activity higher than 0.9 which is not in accordance with their storage at ambient temperatures. Benzo(a)pyrene content was above 2 µg/kg in 11 out of 30 smoked samples (17 ± 16.5 µg/kg on average)
Diffraction based Hanbury Brown and Twiss interferometry performed at a hard x-ray free-electron laser
We demonstrate experimentally Hanbury Brown and Twiss (HBT) interferometry at
a hard X-ray Free Electron Laser (XFEL) on a sample diffraction patterns. This
is different from the traditional approach when HBT interferometry requires
direct beam measurements in absence of the sample. HBT analysis was carried out
on the Bragg peaks from the colloidal crystals measured at Linac Coherent Light
Source (LCLS). We observed high degree (80%) spatial coherence of the full beam
and the pulse duration of the monochromatized beam on the order of 11 fs that
is significantly shorter than expected from the electron bunch measurements.Comment: 32 pages, 10 figures, 2 table
A Topological Study of Contextuality and Modality in Quantum Mechanics
Kochen-Specker theorem rules out the non-contextual assignment of values to
physical magnitudes. Here we enrich the usual orthomodular structure of quantum
mechanical propositions with modal operators. This enlargement allows to refer
consistently to actual and possible properties of the system. By means of a
topological argument, more precisely in terms of the existence of sections of
sheaves, we give an extended version of Kochen-Specker theorem over this new
structure. This allows us to prove that contextuality remains a central feature
even in the enriched propositional system.Comment: 10 pages, no figures, submitted to I. J. Th. Phy
Oscillation modes of two-dimensional nanostructures within the time-dependent local-spin-density approximation
We apply the time-dependent local-spin-density approximation as general
theory to describe ground states and spin-density oscillations in the linear
response regime of two-dimensional nanostructures of arbitrary shape. For this
purpose, a frequency analysis of the simulated real-time evolution is
performed. The effect on the response of the recently proposed spin-density
waves in the ground state of certain parabolic quantum dots is considered. They
lead to the prediction of a new class of excitations, soft spin-twist modes,
with energies well below that of the spin dipole oscillation.Comment: 4 RevTex pages and 4 GIF figures, accepted in PR
A Simple Shell Model for Quantum Dots in a Tilted Magnetic Field
A model for quantum dots is proposed, in which the motion of a few electrons
in a three-dimensional harmonic oscillator potential under the influence of a
homogeneous magnetic field of arbitrary direction is studied. The spectrum and
the wave functions are obtained by solving the classical problem. The ground
state of the Fermi-system is obtained by minimizing the total energy with
regard to the confining frequencies. From this a dependence of the equilibrium
shape of the quantum dot on the electron number, the magnetic field parameters
and the slab thickness is found.Comment: 15 pages (Latex), 3 epsi figures, to appear in PhysRev B, 55 Nr. 20
(1997
- …
