24 research outputs found

    Exploiting the Role of Endogenous Lymphoid-Resident Dendritic Cells in the Priming of NKT Cells and CD8+ T Cells to Dendritic Cell-Based Vaccines

    Get PDF
    Transfer of antigen between antigen-presenting cells (APCs) is potentially a physiologically relevant mechanism to spread antigen to cells with specialized stimulatory functions. Here we show that specific CD8+ T cell responses induced in response to intravenous administration of antigen-loaded bone marrow-derived dendritic cells (BM-DCs), were ablated in mice selectively depleted of endogenous lymphoid-resident langerin+ CD8α+ dendritic cells (DCs), suggesting that the antigen is transferred from the injected cells to resident APCs. In contrast, antigen-specific CD4+ T cells were primed predominantly by the injected BM-DCs, with only very weak contribution of resident APCs. Crucially, resident langerin+ CD8α+ DCs only contributed to the priming of CD8+ T cells in the presence of maturation stimuli such as intravenous injection of TLR ligands, or by loading the BM-DCs with the glycolipid α-galactosylceramide (α-GalCer) to recruit the adjuvant activity of activated invariant natural killer-like T (iNKT) cells. In fact, injection of α-GalCer-loaded CD1d−/− BM-DCs resulted in potent iNKT cell activation, suggesting that this glycolipid antigen can also be transferred to resident CD1d+ APCs. While iNKT cell activation per se was independent of langerin+ CD8α+ DCs, some iNKT cell-mediated activities were reduced, notably release of IL-12p70 and transactivation of NK cells. We conclude that both protein and glycolipid antigens can be exchanged between distinct DC species. These data suggest that the efficacy of DC-based vaccination strategies may be improved by the incorporation of a systemic maturation signal aimed to engage resident APCs in CD8+ T cell priming, and α-GalCer may be particularly well suited to this purpose

    Understanding group A streptococcal pharyngitis and skin infections as causes of rheumatic fever: protocol for a prospective disease incidence study

    Get PDF
    BACKGROUND: Group A Streptococcal (GAS) infections cause the autoimmune disease acute rheumatic fever (ARF), which can progress to chronic rheumatic heart disease (RHD). Treating pharyngitis caused by GAS with antibiotics is important in preventing ARF. However, it is difficult to distinguish these infections from GAS carriers. There is growing evidence for GAS skin infections as a cause of ARF. This study will identify the incidence of true GAS pharyngitis and serological responses to GAS skin infections. The effectiveness of antibiotics for these conditions will be explored, and modifiable risk factors. Serum antibody titres indicating the upper limits of normal (ULN for ASO/ADB antibodies) will be established alongside carriage rates in asymptomatic children. METHODS: This is a prospective disease incidence study, with an associated case-control study. The study population includes 1000 children (5-14 years) from Auckland, New Zealand, 800 of whom have visited their healthcare professional, resulting in a throat or skin swab for GAS, and 200 who are asymptomatic. The conditions of interest are GAS throat swab positive pharyngitis (n = 200); GAS carriage (n = 200); GAS negative throat swab (n = 200); GAS skin infections (n = 200); and asymptomatic controls (n = 200). All participants, except asymptomatic controls, will have acute and convalescent serological testing for ASO/ADB titres (collected < 9 days, and 2-4 weeks following symptom onset, respectively), alongside viral PCR from throat swabs. Asymptomatic controls will have ASO/ADB titres measured in one blood specimen and a throat swab for microbial culture. Caregivers of children will be interviewed using a questionnaire and any GAS isolates identified will be emm typed. The persistence of GAS antibodies will also be investigated. DISCUSSION: Findings from this study will fill critical gaps in scientific knowledge to better understand the pathophysiology of ARF, improve clinical management of GAS infections, and design more effective ARF prevention programmes. In particular it will measure the incidence of true, serologically confirmed GAS pharyngitis; assess the immune response to GAS skin infections and its role as a cause of ARF; examine the effectiveness of oral antibiotics for treating GAS pharyngitis and carriage; and identify whether risk factors for GAS infections might provide intervention points for reducing ARF

    Quality of benzathine penicillin G: A multinational cross-sectional study

    Get PDF
    Benzathine penicillin G (BPG) is used as first-line treatment for most forms of syphilis and as secondary prophylaxis against rheumatic heart disease (RHD). Perceptions that poor quality of BPG is linked to reported adverse effects and therapeutic failure may impact syphilis and RHD control programs. Clinical networks and web-based advertising were used to obtain vials of BPG from a wide range of countries. The quality of BPG was assessed using a high performance liquid chromatography assay capable of detecting relevant impurities and degradation products. Tests for water content, presence of heavy metals and physical characteristics of BPG, including particle size analysis and optical microscopy, also were conducted. Thirty-five batches of BPG were sourced from 16 countries across 4 WHO regions. All batches passed the US Pharmacopeia requirements for BPG injection (content), with no evidence of breakdown products or other detected contaminants. Water content and heavy metal analysis (n = 11) indicated adherence to regulatory standards and Good Manufacturing Practice. Particle size analysis (n = 20) found two batches with aggregated particles (>400 µm) that were dispersed following sonication. Current batches of BPG were of satisfactory pharmaceutical quality but aggregated particles were found in a modest proportion of samples. Future studies should focus on the physical characteristics of BPG which may contribute to variations in plasma penicillin concentrations an observed needle blockages in clinical practice. Pharmacopeial monographs could be revised to include standards on particle size and crystal morphology of BPG

    A population pharmacokinetic study of benzathine benzylpenicillin G administration in children and adolescents with rheumatic heart disease: New insights for improved secondary prophylaxis strategies

    No full text
    Background: Benzathine benzylpenicillin G (BPG) is recommended as secondary prophylaxis to prevent recurrence of acute rheumatic fever and subsequent rheumatic heart disease (RHD). Following intramuscular injection, BPG is hydrolysed to benzylpenicillin. Little is known of the pharmacokinetics of benzylpenicillin following BPG in populations at risk of RHD. Methods: We conducted a longitudinal pharmacokinetic study of children and adolescents receiving secondary prophylaxis throughout six monthly cycles of BPG. Dried blood spot samples were assayed with LC-MS/MS. Benzylpenicillin concentrations were analysed using non-linear mixed-effects modelling with subsequent simulations based on published BMI-for-age and weight-for-age data. Results: Eighteen participants contributed 256 concentrations for analysis. None had benzylpenicillin concentrations>0.02 mg/L for the full time between doses. The median duration above this target was 9.8 days for those with a lower BMI (,25 kg/m2), who also had lower weights, and 0 days for those with a higher BMI (25 kg/m2). Although fat-free mass was a key determinant of benzylpenicillin exposure after a standard dose of BPG, having a higher BMI influenced absorption and almost doubled (increase of 86%) the observed t1=2. Conclusions: Few children and adolescents receiving BPG as secondary prophylaxis will achieve concentrations>0.02 mg/L for the majority of the time between injections. The discordance of this observation with reported efficacy of BPG to prevent rheumatic fever implies a major knowledge gap relating to pharmacokinetic/pharmacodynamic relationships between benzylpenicillin exposure and clinical outcomes
    corecore