1,425 research outputs found

    Learning Dictionaries with Bounded Self-Coherence

    Full text link
    Sparse coding in learned dictionaries has been established as a successful approach for signal denoising, source separation and solving inverse problems in general. A dictionary learning method adapts an initial dictionary to a particular signal class by iteratively computing an approximate factorization of a training data matrix into a dictionary and a sparse coding matrix. The learned dictionary is characterized by two properties: the coherence of the dictionary to observations of the signal class, and the self-coherence of the dictionary atoms. A high coherence to the signal class enables the sparse coding of signal observations with a small approximation error, while a low self-coherence of the atoms guarantees atom recovery and a more rapid residual error decay rate for the sparse coding algorithm. The two goals of high signal coherence and low self-coherence are typically in conflict, therefore one seeks a trade-off between them, depending on the application. We present a dictionary learning method with an effective control over the self-coherence of the trained dictionary, enabling a trade-off between maximizing the sparsity of codings and approximating an equiangular tight frame.Comment: 4 pages, 2 figures; IEEE Signal Processing Letters, vol. 19, no. 12, 201

    Readout and Control of a Power-recycled Interferometric Gravitational-wave Antenna

    Get PDF
    Interferometric gravitational wave antennas are based on Michelson interferometers whose sensitivity to small differential length changes has been enhanced by adding multiple coupled optical resonators. The use of optical cavities is essential for reaching the required sensitivity, but sets challenges for the control system which must maintain the cavities near resonance. The goal for the strain sensitivity of the Laser Interferometer Gravitational-wave Observatory (LIGO) is 10^-21 rms, integrated over a 100 Hz bandwidth centered at 150 Hz. We present the major design features of the LIGO length and frequency sensing and control system which will hold the differential length to within 5 10^-14 m of the operating point. We also highlight the restrictions imposed by couplings of noise into the gravitational wave readout signal and the required immunity against them.Comment: Presentation at ICALEPCS 2001, San Jose, November 2001, (WECT003), 3 page

    Hadronic Atoms and Effective Interactions

    Get PDF
    We examine the problem of hadronic atom energy shifts using the technique of effective interactions and demonstrate equivalence with the conventional quantum mechanical approach.Comment: 22 page latex file with 2 figure

    An all-optical trap for a gram-scale mirror

    Get PDF
    We report on a stable optical trap suitable for a macroscopic mirror, wherein the dynamics of the mirror are fully dominated by radiation pressure. The technique employs two frequency-offset laser fields to simultaneously create a stiff optical restoring force and a viscous optical damping force. We show how these forces may be used to optically trap a free mass without introducing thermal noise; and we demonstrate the technique experimentally with a 1 gram mirror. The observed optical spring has an inferred Young's modulus of 1.2 TPa, 20% stiffer than diamond. The trap is intrinsically cold and reaches an effective temperature of 0.8 K, limited by technical noise in our apparatus.Comment: Major revision. Replacement is version that appears in Phy. Rev. Lett. 98, 150802 (2007

    Determination and optimization of mode matching into optical cavities by heterodyne detection

    Get PDF
    We report on a novel high-sensitivity method to characterize and improve mode matching into optical cavities. This method is based on heterodyne detection of cylindrical transverse cavity modes. A specially designed annular-segmented photodiode is used to measure the amplitude of nonresonant modes reflected by the cavity. Our measurements allow us to optimize cavity mode matching to nearly 99.98% and will play an important diagnostic role in gravitational-wave detectors

    A dispersion theoretical approach to the threshold amplitudes of pion photoproduction

    Full text link
    We give predictions for the partial wave amplitudes of pion photoproduction near threshold by means of dispersion relations at fixed t. The free parameters of this approach are determined by a fit to experimental data in the energy range 160 MeV ≀Eγ≀\le E_{\gamma} \le 420 MeV. The observables near threshold are found to be rather sensitive to the amplitudes in the resonance region, in particular to the Δ\Delta (1232) and N∗N^* (1440). We obtain a good agreement with the existing threshold data for both charged and neutral pion production. Our predictions also agree well with the results of chiral perturbation theory, except for neutral pion production off the neutron.Comment: 16 pages LATEX including 4 postscript figure

    Squeezed light for advanced gravitational wave detectors and beyond

    Get PDF
    Recent experiments have demonstrated that squeezed vacuum states can be injected into gravitational wave detectors to improve their sensitivity at detection frequencies where they are quantum noise limited. Squeezed states could be employed in the next generation of more sensitive advanced detectors currently under construction, such as Advanced LIGO, to further push the limits of the observable gravitational wave Universe. To maximize the benefit from squeezing, environmentally induced disturbances such as back scattering and angular jitter need to be mitigated. We discuss the limitations of current squeezed vacuum sources in relation to the requirements imposed by future gravitational wave detectors, and show a design for squeezed light injection which overcomes these limitations

    Precise calibration of LIGO test mass actuators using photon radiation pressure

    Full text link
    Precise calibration of kilometer-scale interferometric gravitational wave detectors is crucial for source localization and waveform reconstruction. A technique that uses the radiation pressure of a power-modulated auxiliary laser to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a so-called photon calibrator, has been demonstrated previously and has recently been implemented on the LIGO detectors. In this article, we discuss the inherent precision and accuracy of the LIGO photon calibrators and several improvements that have been developed to reduce the estimated voice coil actuator calibration uncertainties to less than 2 percent (1-sigma). These improvements include accounting for rotation-induced apparent length variations caused by interferometer and photon calibrator beam centering offsets, absolute laser power measurement using temperature-controlled InGaAs photodetectors mounted on integrating spheres and calibrated by NIST, minimizing errors induced by localized elastic deformation of the mirror surface by using a two-beam configuration with the photon calibrator beams symmetrically displaced about the center of the optic, and simultaneously actuating the test mass with voice coil actuators and the photon calibrator to minimize fluctuations caused by the changing interferometer response. The photon calibrator is able to operate in the most sensitive interferometer configuration, and is expected to become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit

    Precise calibration of LIGO test mass actuators using photon radiation pressure

    Full text link
    Precise calibration of kilometer-scale interferometric gravitational wave detectors is crucial for source localization and waveform reconstruction. A technique that uses the radiation pressure of a power-modulated auxiliary laser to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a so-called photon calibrator, has been demonstrated previously and has recently been implemented on the LIGO detectors. In this article, we discuss the inherent precision and accuracy of the LIGO photon calibrators and several improvements that have been developed to reduce the estimated voice coil actuator calibration uncertainties to less than 2 percent (1-sigma). These improvements include accounting for rotation-induced apparent length variations caused by interferometer and photon calibrator beam centering offsets, absolute laser power measurement using temperature-controlled InGaAs photodetectors mounted on integrating spheres and calibrated by NIST, minimizing errors induced by localized elastic deformation of the mirror surface by using a two-beam configuration with the photon calibrator beams symmetrically displaced about the center of the optic, and simultaneously actuating the test mass with voice coil actuators and the photon calibrator to minimize fluctuations caused by the changing interferometer response. The photon calibrator is able to operate in the most sensitive interferometer configuration, and is expected to become a primary calibration method for future gravitational wave searches.Comment: 13 pages, 6 figures, accepted by Classical and Quantum Gravit
    • 

    corecore