50 research outputs found

    Healthcare quality improvement and ‘work engagement’; concluding results from a national, longitudinal, cross-sectional study of the ‘Productive Ward-Releasing Time to Care’ programme

    Get PDF
    Concerns about patient safety and reducing harm have led to a particular focus on initiatives that improve healthcare quality. However Quality Improvement (QI) initiatives have in the past typically faltered because they fail to fully engage healthcare professionals, resulting in apathy and resistance amongst this group of key stakeholders. Productive Ward: Releasing Time to Care (PW) is a ward-based QI programme created to help ward-based teams redesign and streamline the way that they work; leaving more time to care for patients. PW is designed to engage and empower ward-based teams to improve the safety, quality and delivery of care

    How Robust Is the Ligand Binding Transition State?

    No full text
    For many drug targets, it has been shown that the kinetics of drug binding (e.g., on rate and off rate) is more predictive of drug efficacy than thermodynamic quantities alone. This motivates the development of predictive computational models that can be used to optimize compounds on the basis of their kinetics. The structural details underpinning these computational models are found not only in the bound state but also in the short-lived ligand binding transition states. Although transition states cannot be directly observed experimentally due to their extremely short lifetimes, recent successes have demonstrated that modeling the ligand binding transition state is possible with the help of enhanced sampling molecular dynamics methods. Previously, we generated unbinding paths for an inhibitor of soluble epoxide hydrolase (sEH) with a residence time of 11 min. Here, we computationally modeled unbinding events with the weighted ensemble method REVO (resampling of ensembles by variation optimization) for five additional inhibitors of sEH with residence times ranging from 14.25 to 31.75 min, with average prediction accuracy within an order of magnitude. The unbinding ensembles are analyzed in detail, focusing on features of the ligand binding transition state ensembles (TSEs). We find that ligands with similar bound poses can show significant differences in their ligand binding TSEs, in terms of their spatial distribution and protein–ligand interactions. However, we also find similarities across the TSEs when examining more general features such as ligand degrees of freedom. Together these findings show significant challenges for rational, kinetics-based drug design

    Single-Nucleotide Changes in the HIV Rev-Response Element Mediate Resistance to Compounds That Inhibit Rev Function▿

    No full text
    Previously we described the identification of two compounds (3-amino-5-ethyl-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide [103833] and 4-amino-6-methoxy-2-(trifluoromethyl)-3-quinolinecarbonitrile [104366]) that interfered with HIV replication through the inhibition of Rev function. We now describe resistant viral variants that arose after drug selection, using virus derived from two different HIV proviral clones, NL4-3 and R7/3. With HIVNL4-3, each compound selected a different single point mutation in the Rev response element (RRE) at the bottom of stem-loop IIC. Either mutation led to the lengthening of the stem-loop IIC stem by an additional base pair, creating an RRE that was more responsive to lower concentrations of Rev than the wild type. Surprisingly, wild-type HIVR7/3 was also found to be inhibited when tested with these compounds, in spite of the fact this virus already has an RNA stem-loop IIC similar to the one in the resistant NL4-3 variant. When drug resistance was selected in HIVR7/3, a virus arose with two nucleotide changes that mapped to the envelope region outside the RRE. One of these nucleotide changes was synonymous with respect to env, and one was not. The combination of both nucleotide changes appeared to be necessary for the resistance phenotype as the individual point mutations by themselves did not convey resistance. Thus, although drug-resistant variants can be generated with both viral strains, the underlying mechanism is clearly different. These results highlight that minor nucleotide changes in HIV RNA, outside the primary Rev binding site, can significantly alter the efficiency of the Rev/RRE pathway

    Nucleic acid recognition and antiviral activity of 1,4-substituted terphenyl compounds mimicking all faces of the HIV-1 Rev protein positively-charged α-helix

    Get PDF
    Small synthetic molecules mimicking the three-dimensional structure of α-helices may find applications as inhibitors of therapeutically relevant protein-protein and protein-nucleic acid interactions. However, the design and use of multi-facial helix mimetics remains in its infancy. Here we describe the synthesis and application of novel bilaterally substituted p-terphenyl compounds containing positively-charged aminoalkyl groups in relative 1,4 positions across the aromatic scaffold. These compounds were specifically designed to mimic all faces of the arginine-rich α-helix of the HIV-1 protein Rev, which forms deeply embedded RNA complexes and plays key roles in the virus replication cycle. Two of these molecules recognized the Rev site in the viral RNA and inhibited the formation of the RRE-Rev ribonucleoprotein complex, a currently unexploited target in HIV chemotherapy. Cellular assays revealed that the most active compounds blocked HIV-1 replication with little toxicity, and likely exerted this effect through a multi-target mechanism involving inhibition of viral LTR promoter-dependent transcription and Rev function. Further development of this scaffold may open new avenues for targeting nucleic acids and may complement current HIV therapies, none of which involve inhibitors interfering with the gene regulation processes of the virus.This project was supported by Ministerio de Economía y Competitividad of Spain (Grants BFU2012–30770 and BFU2015–65103-R to J.G.; CTQ2013-43310 and CTQ2017-84249-P to S.F. and FIS PI16CIII/0034 to J.A.; and FPU15/01485 predoctoral fellowship to D.M.S.), Generalitat Valenciana of Spain (FPA/2015/014 and APOTIP/2016/A007 to J.G. and PROMETEOII/2014/073 to S.F.), the Spanish AIDS Research Network (RD16CIII/0002/0001-ISCIII–FEDER to J.A.), Universidad Católica de Valencia (2017-114-001 and 2018-114-001 to J.G.), and European AIDS Vaccine Initiative 2020 (ID 681137 to J.A.). The authors thank Ainhoa Sánchez for carrying out initial fluorescence anisotropy experiments, Ángel Cantero-Camacho for designing and testing the primers used to amplify LTRc, and Jerónimo Bravo and Antonio Pineda for facilitating access to ITC equipment. Plasmid pLTR(HTLV)-luc (pGL4.20-U3R) was kindly donated by Thomas Kress.S

    BACE knockout mice are healthy despite lacking the primary beta-secretase activity in brain: implications for Alzheimer's disease therapeutics

    No full text
    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by accumulation of amyloid plaques and neurofibrillary tangles in the brain. The major components of plaque, beta-amyloid peptides (Abetas), are produced from amyloid precursor protein (APP) by the activity of beta- and gamma-secretases. beta-secretase activity cleaves APP to define the N-terminus of the Abeta1-x peptides and, therefore, has been a long- sought therapeutic target for treatment of AD. The gene encoding a beta-secretase for beta-site APP cleaving enzyme (BACE) was identified recently. However, it was not known whether BACE was the primary beta-secretase in mammalian brain nor whether inhibition of beta-secretase might have effects in mammals that would preclude its utility as a therapeutic target. In the work described herein, we generated two lines of BACE knockout mice and characterized them for pathology, beta-secretase activity and Abeta production. These mice appeared to develop normally and showed no consistent phenotypic differences from their wild-type littermates, including overall normal tissue morphology and brain histochemistry, normal blood and urine chemistries, normal blood-cell composition, and no overt behavioral and neuromuscular effects. Brain and primary cortical cultures from BACE knockout mice showed no detectable beta-secretase activity, and primary cortical cultures from BACE knockout mice produced much less Abeta from APP. The findings that BACE is the primary beta-secretase activity in brain and that loss of beta-secretase activity produces no profound phenotypic defects with a concomitant reduction in beta-amyloid peptide clearly indicate that BACE is an excellent therapeutic target for treatment of AD
    corecore