457 research outputs found

    Measuring the Direction and Angular Velocity of a Black Hole Accretion Disk via Lagged Interferometric Covariance

    Full text link
    We show that interferometry can be applied to study irregular, rapidly rotating structures, as are expected in the turbulent accretion flow near a black hole. Specifically, we analyze the lagged covariance between interferometric baselines of similar lengths but slightly different orientations. For a flow viewed close to face-on, we demonstrate that the peak in the lagged covariance indicates the direction and angular velocity of the emission pattern from the flow. Even for moderately inclined flows, the covariance robustly estimates the flow direction, although the estimated angular velocity can be significantly biased. Importantly, measuring the direction of the flow as clockwise or counterclockwise on the sky breaks a degeneracy in accretion disk inclinations when analyzing time-averaged images alone. We explore the potential efficacy of our technique using three-dimensional, general relativistic magnetohydrodynamic (GRMHD) simulations, and we highlight several baseline pairs for the Event Horizon Telescope (EHT) that are well-suited to this application. These results indicate that the EHT may be capable of estimating the direction and angular velocity of the emitting material near Sagittarius A*, and they suggest that a rotating flow may even be utilized to improve imaging capabilities.Comment: 8 Pages, 4 Figures, accepted for publication in Ap

    Closure statistics in interferometric data

    Full text link
    Interferometric visibilities, reflecting the complex correlations between signals recorded at antennas in an interferometric array, carry information about the angular structure of a distant source. While unknown antenna gains in both amplitude and phase can prevent direct interpretation of these measurements, certain combinations of visibilities called closure phases and closure amplitudes are independent of antenna gains and provide a convenient set of robust observables. However, these closure quantities have subtle noise properties and are generally both linearly and statistically dependent. These complications have obstructed the proper use of closure quantities in interferometric analysis, and they have obscured the relationship between analysis with closure quantities and other analysis techniques such as self calibration. We review the statistics of closure quantities, noting common pitfalls that arise when approaching low signal-to-noise due to the nonlinear propagation of statistical errors. We then develop a strategy for isolating and fitting to the independent degrees of freedom captured by the closure quantities through explicit construction of linearly independent sets of quantities along with their noise covariance in the Gaussian limit, valid for moderate signal-to-noise, and we demonstrate that model fits have biased posteriors when this covariance is ignored. Finally, we introduce a unified procedure for fitting to both closure information and partially calibrated visibilities, and we demonstrate both analytically and numerically the direct equivalence of inference based on closure quantities to that based on self calibration of complex visibilities with unconstrained antenna gains.Comment: 31 pages, 17 figure

    Relative Astrometry of Compact Flaring Structures in Sgr A* with Polarimetric VLBI

    Full text link
    We demonstrate that polarimetric interferometry can be used to extract precise spatial information about compact polarized flares of Sgr A*. We show that, for a faint dynamical component, a single interferometric baseline suffices to determine both its polarization and projected displacement from the quiescent intensity centroid. A second baseline enables two-dimensional reconstruction of the displacement, and additional baselines can self-calibrate using the flare, enhancing synthesis imaging of the quiescent emission. We apply this technique to simulated 1.3-mm wavelength observations of a "hot spot" embedded in a radiatively inefficient accretion disk around Sgr A*. Our results indicate that, even with current sensitivities, polarimetric interferometry with the Event Horizon Telescope can achieve ~5 microarcsecond relative astrometry of compact flaring structures near Sgr A* on timescales of minutes.Comment: 9 Pages, 4 Figures, accepted for publication in Ap

    High Resolution Linear Polarimetric Imaging for the Event Horizon Telescope

    Get PDF
    Images of the linear polarization of synchrotron radiation around Active Galactic Nuclei (AGN) identify their projected magnetic field lines and provide key data for understanding the physics of accretion and outflow from supermassive black holes. The highest resolution polarimetric images of AGN are produced with Very Long Baseline Interferometry (VLBI). Because VLBI incompletely samples the Fourier transform of the source image, any image reconstruction that fills in unmeasured spatial frequencies will not be unique and reconstruction algorithms are required. In this paper, we explore extensions of the Maximum Entropy Method (MEM) to linear polarimetric VLBI imaging. In contrast to previous work, our polarimetric MEM algorithm combines a Stokes I imager that uses only bispectrum measurements that are immune to atmospheric phase corruption with a joint Stokes Q and U imager that operates on robust polarimetric ratios. We demonstrate the effectiveness of our technique on 7- and 3-mm wavelength quasar observations from the VLBA and simulated 1.3-mm Event Horizon Telescope observations of Sgr A* and M87. Consistent with past studies, we find that polarimetric MEM can produce superior resolution compared to the standard CLEAN algorithm when imaging smooth and compact source distributions. As an imaging framework, MEM is highly adaptable, allowing a range of constraints on polarization structure. Polarimetric MEM is thus an attractive choice for image reconstruction with the EHT.Comment: 19 pages, 9 figures. Accepted for publication in ApJ. Imaging code available at https://github.com/achael/eht-imaging

    Modeling Seven Years of Event Horizon Telescope Observations with Radiatively Inefficient Accretion Flow Models

    Full text link
    An initial three-station version of the Event Horizon Telescope, a millimeter-wavelength very-long baseline interferometer, has observed Sagittarius A* (Sgr A*) repeatedly from 2007 to 2013, resulting in the measurement of a variety of interferometric quantities. Of particular importance, there is now a large set of closure phases, measured over a number of independent observing epochs. We analyze these observations within the context of a realization of semi-analytic radiatively inefficient disk models, implicated by the low luminosity of Sgr A*. We find a broad consistency among the various observing epochs and between different interferometric data types, with the latter providing significant support for this class of models of Sgr A*. The new data significantly tighten existing constraints on the spin magnitude and its orientation within this model context, finding a spin magnitude of a=0.100.100.10+0.30+0.56a=0.10^{+0.30+0.56}_{-0.10-0.10}, an inclination with respect to the line of sight of θ=60813+5+10\theta={60^\circ}^{+5^\circ+10^\circ}_{-8^\circ-13^\circ}, and a position angle of ξ=1561727+10+14\xi={156^\circ}^{+10^\circ+14^\circ}_{-17^\circ-27^\circ} east of north. These are in good agreement with previous analyses. Notably, the previous 180180^\circ degeneracy in the position angle has now been conclusively broken by the inclusion of the closure phase measurements. A reflection degeneracy in the inclination remains, permitting two localizations of the spin vector orientation, one of which is in agreement with the orbital angular momentum of the infrared gas cloud G2 and the clockwise disk of young stars. This possibly supports a relationship between Sgr A*'s accretion flow and these larger-scale features.Comment: 16 pages, 11 figures, accepted to Ap

    Dynamical Imaging with Interferometry

    Get PDF
    By linking widely separated radio dishes, the technique of very long baseline interferometry (VLBI) can greatly enhance angular resolution in radio astronomy. However, at any given moment, a VLBI array only sparsely samples the information necessary to form an image. Conventional imaging techniques partially overcome this limitation by making the assumption that the observed cosmic source structure does not evolve over the duration of an observation, which enables VLBI networks to accumulate information as the Earth rotates and changes the projected array geometry. Although this assumption is appropriate for nearly all VLBI, it is almost certainly violated for submillimeter observations of the Galactic Center supermassive black hole, Sagittarius A* (Sgr A*), which has a gravitational timescale of only ~20 seconds and exhibits intra-hour variability. To address this challenge, we develop several techniques to reconstruct dynamical images ("movies") from interferometric data. Our techniques are applicable to both single-epoch and multi-epoch variability studies, and they are suitable for exploring many different physical processes including flaring regions, stable images with small time-dependent perturbations, steady accretion dynamics, or kinematics of relativistic jets. Moreover, dynamical imaging can be used to estimate time-averaged images from time-variable data, eliminating many spurious image artifacts that arise when using standard imaging methods. We demonstrate the effectiveness of our techniques using synthetic observations of simulated black hole systems and 7mm Very Long Baseline Array observations of M87, and we show that dynamical imaging is feasible for Event Horizon Telescope observations of Sgr A*.Comment: 16 Pages, 12 Figures, Accepted for publication in Ap

    Approaching the event horizon: 1.3mm VLBI of SgrA*

    Full text link
    Advances in VLBI instrumentation now allow wideband recording that significantly increases the sensitivity of short wavelength VLBI observations. Observations of the super-massive black hole candidate at the center of the Milky Way, SgrA*, with short wavelength VLBI reduces the scattering effects of the intervening interstellar medium, allowing observations with angular resolution comparable to the apparent size of the event horizon of the putative black hole. Observations in April 2007 at a wavelength of 1.3mm on a three station VLBI array have now confirmed structure in SgrA* on scales of just a few Schwarzschild radii. When modeled as a circular Gaussian, the fitted diameter of SgrA* is 37 micro arcsec (+16,-10; 3-sigma), which is smaller than the expected apparent size of the event horizon of the Galactic Center black hole. These observations demonstrate that mm/sub-mm VLBI is poised to open a new window onto the study of black hole physics via high angular resolution observations of the Galactic Center.Comment: 6 pages, 4 figures, Proceedings for "The Universe under the Microscope" (AHAR 2008), held in Bad Honnef (Germany) in April 2008, to be published in Journal of Physics: Conference Series by Institute of Physics Publishing, R. Schoedel, A. Eckart, S. Pfalzner, and E. Ros (eds.

    A global soil spectral calibration library and estimation service

    Get PDF
    There is growing global interest in the potential for soil reflectance spectroscopy to fill an urgent need for more data on soil properties for improved decision-making on soil security at local to global scales. This is driven by the capability of soil spectroscopy to estimate a wide range of soil properties from a rapid, inexpensive, and highly reproducible measurement using only light. However, several obstacles are preventing wider adoption of soil spectroscopy. The biggest obstacles are the large variation in the soil analytical methods and operating procedures used in different laboratories, poor reproducibility of analyses within and amongst laboratories and a lack of soil physical archives. In addition, adoption is hindered by the expense and complexity of building soil spectral libraries and calibration models. The Global Soil Spectral Calibration Library and Estimation Service is proposed to overcome these obstacles by providing a freely available estimation service based on an open, high quality and diverse spectral calibration library and the extensive soil archives of the Kellogg Soil Survey Laboratory (KSSL) of the Natural Resources Conservation Service of the United States Department of Agriculture (USDA). The initiative is supported by the Global Soil Laboratory Network (GLOSOLAN) of the Global Soil Partnership and the Soil Spectroscopy for Global Good network, which provide additional support through dissemination of standards, capacity development and research. This service is a global public good which stands to benefit soil assessments globally, but especially developing countries where soil data and resources for conventional soil analyses are most limited
    corecore