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A B S T R A C T   

There is growing global interest in the potential for soil reflectance spectroscopy to fill an urgent need for more 
data on soil properties for improved decision-making on soil security at local to global scales. This is driven by 
the capability of soil spectroscopy to estimate a wide range of soil properties from a rapid, inexpensive, and 
highly reproducible measurement using only light. However, several obstacles are preventing wider adoption of 
soil spectroscopy. The biggest obstacles are the large variation in the soil analytical methods and operating 
procedures used in different laboratories, poor reproducibility of analyses within and amongst laboratories and a 
lack of soil physical archives. In addition, adoption is hindered by the expense and complexity of building soil 
spectral libraries and calibration models. The Global Soil Spectral Calibration Library and Estimation Service is 
proposed to overcome these obstacles by providing a freely available estimation service based on an open, high 
quality and diverse spectral calibration library and the extensive soil archives of the Kellogg Soil Survey Labo-
ratory (KSSL) of the Natural Resources Conservation Service of the United States Department of Agriculture 
(USDA). The initiative is supported by the Global Soil Laboratory Network (GLOSOLAN) of the Global Soil 
Partnership and the Soil Spectroscopy for Global Good network, which provide additional support through 
dissemination of standards, capacity development and research. This service is a global public good which stands 
to benefit soil assessments globally, but especially developing countries where soil data and resources for con-
ventional soil analyses are most limited.   

1. Introduction 

Up-to-date information on soil properties and the ability to track 
changes in soil properties over time are critical for improving multiple 
decisions on soil security at various scales, ranging from global climate 
change modelling and policy to national level environmental and 
development planning, to farm and field level resource management. 
This need is important everywhere, but greatest in resource poor 
countries where soil information and resources are most limited and 
where policies for protecting soils to achieve soil sustainability and se-
curity are not well developed. Steady advances in digital soil mapping 
(Hengl et al., 2021; Minasny and McBratney, 2016; Searle et al., 2021; 
Wadoux and McBratney, 2021) are providing solutions for planning and 
precision agriculture but accuracy is generally limited by the spatial 

density and quality of ground observations used for training and the 
limits on the power of remote sensing covariates to predict spatial 
variation in soil properties. Conducting conventional soil analysis on 
large numbers of samples required for digital approaches is generally 
cost prohibitive and there is need for low-cost measurement of soil 
properties, both in the laboratory and in the field using proximal sensing 
(Wadoux and McBratney, 2021). This need extends beyond digital 
mapping to many other applications, such as scaling soil testing services 
to smallholder farmers, particularly in sub-Saharan African and South 
Asia, benchmarking and tracking soil health for regenerative agricul-
ture, and soil carbon trading. 

There is increasing evidence that the need for low-cost soil mea-
surements can be partly met through the use of soil diffuse reflectance 
spectroscopy in the visible (Vis), near-infrared (NIR) and mid-infrared 
(MIR) ranges, providing a rapid and reproducible method for 
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estimating soil properties (Bellon-Maurel and McBratney, 2011; Nocita 
et al., 2015; Shepherd and Walsh, 2007: Stenberg et al., 2010; Viscar-
ra-Rossel et al., 2006; 2016). Benchtop MIR, NIR and VisNIR in-
struments are now in common use in soil laboratories (Benedetti and van 
Egmond, 2021). Soil spectroscopy has shown the ability to estimate a 
wide range of soil physical, chemical and biological properties (Barra 
et al., 2021; Dangal et al., 2019; Nocita et al., 2015; Stenberg et al., 
2010; Terhoeven et al., 2010). Soil properties that relate directly to 
mineral and organic composition tend to be very well estimated (R2 

>0.8), for example soil organic and inorganic carbon, total soil nitrogen, 
exchangeable calcium, while other properties may be estimated to 
varying degrees of accuracy through indirect associations (e.g., 
extractable nutrients) (Towett et al., 2015). However, care should be 
taken to ensure that calibrations hold up adequately when soil proper-
ties are estimated solely due to correlation with properties that have 
primary associations with spectral absorption features. 

The main requirement of soil spectroscopy is for calibration to 
reference soil property measurements for a given population of soils. 
This requires building databases of spectra (spectral libraries) that 
represent the soil diversity in a target geographical area in combination 
with a representative subset of soil samples measured with standard 
methods (i.e., reference samples) with known accuracies (McBratney 
et al., 2006; Shepherd and Walsh, 2007). The spectral and soil property 
reference data comprise a spectral calibration library. Calibration 
modelling of the relationships between the soil properties measured 
with standard methods and spectra is done using multivariate regression 
methods, such as partial least squares regression, or increasingly using 
machine learning methods, such as Random Forests, neural networks, 
deep learning, and ensemble models (Hengl et al., 2021; Ng et al., 
2020b; Sila et al., 2016; Yang et al., 2021). With large spectral cali-
bration libraries, there has been even greater success with local models 
that subset spectral nearest neighbours in spectral data space and 
develop an individual model for each sample for which an estimation is 
to be made. 

Despite major advances in building spectral libraries at continental 
and national levels (see Section 2), a major limitation for wide deploy-
ment of soil spectroscopy is the lack of availability of consistent cali-
bration libraries and soil property estimation models (Dangal et al., 
2019; Gomez et al., 2020). The high cost of building calibrations, 
particularly of analysing large numbers of soil samples for a wide suite of 
properties (the reference data) that are representative of the region of 
interest and a lack of consistency and reliability of reference analyses 

present major obstacles. Comprehensive physical archives of recent 
samples are also rare. Where these do exist, often either the soil 
analytical data are old and inconsistent, or there is insufficient sample 
quantity or budget to allow new analysis of a suite of soil properties. 
These limitations present large obstacles especially for developing 
countries, where resources for collecting, storing and analysing soil 
samples to a high quality are scarce. The lack of calibration libraries is 
halting the utilization of the technology (Benedetti and van Egmond, 
2021) by existing national soil spectroscopy laboratories in Africa (Soil 
Plant Spectral Diagnostics Lab, 2021) even though these countries stand 
to gain the most from deployment of soil spectral technology. 

This paper describes a proposal for establishing a Global Soil Spectral 
Calibration Library and Estimation Service (GSCLES) to help overcome 
these obstacles. The concept has evolved through a partnership amongst 
several institutions1 and is being fostered under the umbrella of the 
Global Soil Laboratory Network (GLOSOLAN) of the Global Soil Part-
nership of the Food & Agriculture Organisation of the United Nation 
(FAO) and Soil Spectroscopy for Global Good.2 The initiative builds on 
the extensive existing MIR spectral calibration library of the Kellogg Soil 
Survey Laboratory (KSSL) of the Natural Resources Conservation Service 
of the United States Department of Agriculture (USDA) (See Section 4.2). 
KSSL prioritised MIR over other spectral ranges due to its high predic-
tion accuracy for a wide range of soil properties (e.g., Janik et al., 2007; 
Ng et al., 2019, 2022a; Reeves, 2010). However, the service could be 
extended to include other spectral ranges. 

The objectives of the GSCLES initiative are to:  

1 Build a globally representative soil spectral calibration library 
(database) based on soil mid-infrared diffuse reflectance (MIR) 
spectra initially, with accompanying soil property reference data 
recorded in one gold-standard reference laboratory.  

2 Provide a freely available and easy-to-use soil property estimation 
service based on the global spectral library using open-source 
models. 

3 Support countries to contribute to the global spectral calibration li-
brary and use the soil property estimation service with local 
measured soil spectra. 

2. Soil spectroscopy uptake 

Soil spectroscopy is being increasingly taken up, including in Africa 
and Asia. For example, World Agroforestry, at the request of national 
programs, has helped establish 30 benchtop spectrometers in 16 Africa 
countries and provided training support (Soil Plant Spectral Diagnostics 
Lab, 2021). Four Sub-Saharan African countries have deployed MIR 
spectroscopy in the establishment of their national soil information 
systems under the Africa Soil Information Service project (National Soil 
Services, 2021), joined recently by the Rwanda Soil Information Service 
(RwaSIS, 2021). A new initiative is underway to establish a Soil Infor-
mation System for Africa based on soil spectral technology including the 
Forum for Agricultural Research in Africa and several African national 
programs (Soils4Africa, 2021). In South Asia, the Government of India 
has approved the deployment of soil spectroscopy (ICAR, 2020). The 
National Soil Conservation Service (NRCS) has established benchtop 
MIR at the Kellogg Soil Survey Laboratory and at 15 regional centres. 
MIR spectroscopy is also used extensively in Australia for digital soil 
mapping (Searle et al., 2021). Additionally, there has been rapid 
development of portable spectral devices that show increasing potential 

Abbreviations 

KSSL Kellogg Soil Survey Laboratory (KSSL) of the Natural 
Resources Conservation Service of the USDA 

USDA United States Department of Agriculture 
GLOSOLAN Global Soil Laboratory Network of the Global Soil 

Partnership 
Vis Visible 
NIR Near infrared 
MIR Mid infrared 
LUCAS The Land Use/Cover Area frame Statistical Survey of 

Europe 
GSCLES Global Soil Spectral Calibration Library & Estimation 

Service 
FAO Food & Agriculture Organization 
GSP Global Soil Partnership 
SOC Soil organic carbon 
SIS Soil Information System 
OGC Open Geospatial Consortium 
GloSIS Global Soil Information System  

1 FAO under the Global Soil Laboratory Network of the Global Soil Partner-
ship, United States Department of Agriculture’s Natural Resources Conservation 
Service, World Agroforestry (CIFOR-ICRAF), Innovative Solutions for Decision 
Agriculture (iSDA), ISRIC World Soil Information, Woodwell Climate Research 
Center, University of Nebraska, and the University of Sydney.  

2 https://soilspectroscopy.org 
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for field use (Minasny et al., 2009; Ng et al., 2020a; Tang et al., 2020). 
Commercial soil testing laboratories are now adopting infrared spec-
troscopy for some soils analyses (e.g., CNLS, 2021) and NIR portable 
scanning services have been in commercial use for several years (e.g., 
AgroCares, 2021). 

Soil spectral libraries are being developed, at national level (e.g., 
Grinand et al., 2012; Viscarra Rossel and Webster 2012), regional level 
(e.g., Stevens et al., 2013; Vågen et al., 2020) and global level (Dangal 
et al., 2019; Brown et al., 2006; Terhoeven-Urselmans et al., 2010; 
Viscarra Rossel et al., 2016). Based on 4184 soil samples from 37 
countries, although only 416 samples were from outside of the USA, 
Brown et al. (2006) estimated that 5.2 × 109 carefully selected cali-
bration samples would be required to span the known global soil 
compositional space. Ten years later, the largest and most diverse cur-
rent available global Vis-NIR soil spectral library was reported by Vis-
carra Rossel et al. (2016). This global dataset consists of 23,631 soil 
spectra from 92 countries, and all spectra were voluntarily contributed 
by around 45 soil scientists and researchers from 35 countries and in-
stitutions. The study showed that the global spectral library could esti-
mate soil organic carbon (R2 0.89), extractable Fe (R2 0.86), calcium 
carbonate content (R2 0.77), CEC (R2 0.73), clay (R2 0.71), and silt (R2 

0.68) contents, and pH (R2 0.62). Terhoeven et al. (2010), using a 
globally distributed MIR spectral library, demonstrated predictions for 
spatially independent validation samples for pH (R2 0.89), cation ex-
change capacity (R2 0.82), and organic C content (R2 0.77). 

The most complete and consistent continental Vis-NIR soil spectral 
library has been developed in the framework of the European Land Use/ 
Cover Area frame Statistical Survey (LUCAS) during which ~20,000 
geo-referenced top-soil samples were collected to assess the state of the 
soils across Europe (Stevens et al., 2013). Twelve chemical and physical 
properties were estimated. The Africa Soil Information Service con-
ducted the first stratified random sampling of sub-Saharan Africa soils, 
providing a MIR calibration library of over 1900 samples (Towett et al., 
2015; Vågen et al., 2020>). Soil properties that were well estimated 
(R2>0.8) included organic carbon, total nitrogen, pH, and Mehlich-3 Al 
and Ca. Johnson et al. (2019) assessed soil fertility properties in rice 
fields based on a large regional MIR soil spectral library from 
sub-Saharan Africa. A total of 2845 topsoil samples from 42 sites in 20 
sub-Saharan African countries were collected from three different target 
rice production systems (irrigated lowland, rainfed lowland and rainfed 
upland). Thirty soil properties were measured by conventional wet 
chemistry analysis. Their results suggested that NIR-MIR spectroscopy 
can offer an alternative to conventional wet chemistry methods for 
assessing those soil fertility properties in rice fields and could also be 
used to develop soil fertility indicators. 

One of the most comprehensive national (Vis-NIR-MIR) soil spectral 
libraries was developed by the French national soil quality monitoring 
network (Arrouays et al., 2002). The French soil spectral library samples 
were collected from regular, nationwide 16 km grids which consist of 
over 2200 sites and 3800 samples. Recently, Gomez et al. (2020) suc-
cessfully used French MIR soil dataset (2178 topsoil samples) to cali-
brate soil inorganic carbon and soil organic carbon, then tested the 
models using 96 topsoil samples from a Tunisian MIR dataset. This work 
highlighted the very high applicability of MIR for soil inorganic carbon 
determination and the robustness of soil inorganic carbon prediction 
models, even when the training and testing set come from different 
pedologic and climatic contexts. Australia has extensive VNIR (Viscarra 
Rossel and Webster, 2012) and MIR spectral libraries (CSIRO, 2021) 
which have been widely used for digital soil mapping and routine soil 
analytical purposes. Brazil has developed a VNIR spectral library 
(Dematte et al., 2019) consisting of 39,284 soil samples from all 26 
states and a MIR spectral library consisting of 4309 soil samples from 
different depths and from across the country (Mendes et al., 2022). The 
GSCLES aims to build on these successes and help enable wider uptake of 
soil spectroscopy. 

3. Main components of the GSCLES 

The purpose of soil spectroscopy is to model the relationship between 
soil properties measured by standard/reference methods (reference 
measurements) and spectral variables so that soil properties can be 
rapidly and inexpensively estimated from spectra for new samples. The 
main purpose of the GSCLES (Fig. 1) is to enable a user in any locality to 
upload soil spectra, recorded using an approved standard operating 
procedure (SOP)), and obtain estimates for a suite of soil properties 
together with uncertainty estimates. A fundamental principle of the 
GSCLES is that the spectral and reference measurements that provide the 
foundation for the calibration library and estimation service are per-
formed in one primary laboratory with well-established and rigorous 
quality control protocols. To achieve this, the primary laboratory needs 
access to a physical sample archive of globally diverse soil samples, 
which can be further developed over time. 

The estimation service is an Application Programming Interface 
(API) that provides spectral quality checks, spectral distance measures 
and calibration models. The versioned calibration models are available 
online with an option provided for download of local offline versions. 
The degree to which a submitted spectrum is an outlier to the calibration 
library provides an indication of the value of that sample for improving 
the overall calibration model. Users may then submit high value samples 
to the central laboratory for spectral and reference analysis, which are 
then added into the global calibration library. In this way the value of 
the estimation service iteratively improves as new samples are submit-
ted and characterised and the calibration models are updated. 

The main value of the GSCLES is in the efficiency it creates by: (i) 
reducing the amount of investment a country or local laboratory needs 
to make in reference measurements for constructing spectral calibra-
tions, (ii) allowing countries to leverage a much larger and more diverse 
spectral calibration library than they would have access to by them-
selves, and (iii) simplifying the process of building, maintaining, and 
deploying soil spectral libraries and calibrations. The following sections 
provide more details on each component of GSCLES. 

4. Calibration library 

4.1. Quality of soil reference & spectral data 

For a soil spectroscopy estimation service, the obtained prediction 
error such as the Root Mean Square Error of Prediction (RMSEP) for 
unknown samples is estimated from the calculated differences between 
the prediction values and “known” reference values of the validation set. 
A major source of model error is the precision and accuracy of the 
reference data (i.e., conventionally measured with standard methods) to 
which spectra are modelled during calibration. Laboratory reference 
analysis of soil chemical, biological or physical properties contain 
measurement error derived from cumulative errors through the chain of 
sample preparation, sub-sampling, and instrument readings (BIPM et al., 
2008; Taylor, 1997). Many laboratories routinely monitor repeatability 
(precision) over time, using internal standards, and absolute error (bias) 
using externally supplied standards, such as those supplied by WEPAL 
(2021). However, variability in reference data remains a big obstacle to 
the development of spectral calibration libraries due to combined effect 
of differences in the analytical methods and standard operating pro-
cedures (SOPs) used, and the large inter-laboratory variation even when 
the same methods and SOPs are used. The inter-lab variability problem 
is illustrated by the results of a global ring test conducted by GLOSOLAN 
(Hartmann and Suvannang, 2020). A set of control soil samples were 
sent out to 120 laboratories around the world together with a standard 
operating procedure (SOP) for conducting the soil test. The results 
returned from 82 laboratories show extreme variation (Fig. 2). The 
spread of the values obtained across different laboratories spans the 
typical range of values obtained in agricultural soils. Such large errors 
will obviously significantly degrade the performance of a spectral 
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estimation model (Aastveit and Marum, 1991; Faber and Kowalski, 
1997; Mark et al., 1989; Sørensen, 2002). The importance of high 
quality and consistent reference measurements coupled with the diffi-
culty of achieving them has been a major motivation for the develop-
ment of the GSCLES centred on one ‘gold standard’ laboratory. With 
high quality reference data from a large, representative, and 
high-quality global spectral library, random errors associated with the 
reference measurements can be reduced due to averaging during the 
spectral calibration regression (Abrams et al., 1987; Difoggio, 1995). 
This means that for some soil properties, the prediction error can 
approach the error associated with the standard laboratory method. 
However, this does not apply to systematic errors, such as those 
observed amongst different laboratories. 

Like standard methods, soil spectroscopy is also prone to errors due 

to differences in: (i) spectroscopy equipment and SOPs used (Knadel 
et al., 2013; Ge et al., 2011; Pimstein et al., 2011); (ii) soil preparation 
and sub-sampling (Ben-Dor et al., 2015); (iii) the temperature and hu-
midity of the environment (Challibrat et al., 2019); and (iv) the date of 
measurement of the spectral data relative to the reference data due to 
change in soil properties during storage. Slight variations in instrument 
set up and scanning conditions can lead to quite significant differences 
in absorption features (Ge et al., 2011) ultimately resulting in spurious 
predictions. For example, Gholizadeh et al. (2021) compared estima-
tions of soil organic carbon (SOC) for spectra recorded on different 
Vis-NIR spectrometers within and across laboratories. Merging raw 
reflectance spectra from multiple spectrometers and laboratories resul-
ted in poor model performance (R2 = 0.48, RMSE = 0.33%). However, 
use of an internal standard and spectral pre-processing minimized 

Fig. 1. Conceptual flow chart of Soil Spectral Calibration Library and Estimation Service.  

Fig. 2. Results of triplicate analysis of control samples returned by 82 participating laboratories using the same standard operating procedure for soil pH (mean 5.2, 
SD 0.25) and organic carbon by the Walkley-Black method 
Source: Hartmann and Suvannang (2020) 
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variations between scanning environments enabling the merging of the 
spectral libraries and significantly improved model performance (R2 =

0.70, RMSE = 0.25%). A major thrust of the GSCLES initiative is to 
develop and disseminate SOPs, standards and tools and enhance ca-
pacity to minimise these errors (see Section 7). 

A final source of error is the modelling approach chosen, which in-
cludes the choice of modelling technique (e.g., partial least squares 
regression, memory-based learning, neural networks, random forests, 
Cubist, etc.), and details such as wavelength range selections and data 
pre-processing methods. There are many modelling approaches and 
options to choose from and these topics are an ongoing area of research. 
Which method is best depends on factors such as available computa-
tional capacity and the level of error that is acceptable for the particular 
application for which the model is intended to serve. 

4.2. The KSSL spectral calibration library 

To address some of the problems described above that are related to 
variable reference and spectral data, the GCSLES uses one global refer-
ence laboratory for building the soil spectral calibration library. The 
USDA-NSSC Kellogg Soil Survey Laboratory (KSSL) has successfully 
demonstrated the use of mid-infrared (MIR) spectral calibrations for key 
soil properties across a very wide range of soil types across the conti-
nental USA (Table 1; Dangal et al., 2019; Sanderman et al., 2020). Ng 
et al. (2022a) based on 45,000 samples from the KSSL library demon-
strated that MIR could infer 50 soil properties with high accuracy (R2 

centroid 0.76- 0.88) and 44 properties with moderate accuracy (R2 

centroid 0.59). They concluded the properties estimated can be used to 
evaluate a range of soil functions, including food production, carbon 
storage, water storage, nutrient cycling, and habitat function. The 
foundation for the high performance of the calibrations based on the 
KSSL library is the consistency in methods and standard operating 
procedures and consistency in quality control of the reference methods 
sustained over many years. This is coupled with consistency from the use 
of primary MIR instrument and associated SOP. While other laboratories 

with gold standard reference analyses and large spectral libraries could 
be considered for this role, this initiative selected the KSSL due to the 
broad compositional diversity of its soil archive, its quality as shown in 
the spectroscopy literature (e.g., Dangal et al., 2019; Ng et al., 2022a., 
Sanderman et al., 2020; Seybold et al., 2019), and its open and unen-
cumbered data sharing policy according to U.S. law (https://www.congr 
ess.gov/bill/115th-congress/house-bill/1770). 

The current calibration library of over 80,000 soil samples, which is 
still growing, represents a significant coverage of global soil variation, 
including 292 globally distributed samples from ISRIC World Soil In-
formation. KSSL has more than 120,000 additional analysed samples by 
standard methods, including international samples, still to be scanned 
using MIR (Table 2, Appendix 1). Therefore, the spectral calibration li-
brary proposed under GSCLES is based on the KSSL laboratory. 

Soils are compositionally highly variable across the globe, and it is 
the extent to which the variability of soil properties for a given region is 
captured by the predictive model that determines its suitability for 
reliably estimating soil properties of samples collected in that region. If 
only part of regional variability is captured in the calibration, the model 
is not expected to perform as well for under-represented samples 
compared with a model that captures all regional soil variability. This is 
one of the impetuses for developing a global calibration library, as it will 
likely capture a wide range of spectral variability of global soil resources 
for improved model performances at local scales, possibly in addition to 
the use of high quality local libraries, if available. 

The use of a wide representative spectral library, in addition to 
improving model performance, also increases model efficiency due to 
the fact that spectral properties of soils, for example with similar 
mineralogy, from one part of the world can be similar to those from 
other parts of the world. For example, Fig. 3 shows the Africa Soil In-
formation Service MIR spectral library overlaid in principal components 
space on the KSSL spectral library. There is considerable overlap sug-
gesting that even the existing KSSL library could provide reasonable soil 
property estimates for much of sub-Saharan Africa. Furthermore, sam-
ples that fall outside the KSSL space can be flagged as of high value for 

Table 1 
R-square values for spectrally estimated versus reference soil properties for a 20% hold-out validation set from the KSSL laboratory using mid-infrared spectroscopy 
and memory-based learning for a diverse set of soils from the USA (Dangal et al., 2019; Sanderman et al., 2020).  

Property n Units Min 25th percentile Mean 75th percentile Max R2 RMSEP 

Physical indicators  
Water retention (1/3 bar) 10,996 wt% 1.6 18.4 27.9 30.4 2124.9 0.83 5.98 
Water retention (15 bar) 27,116 wt% − 6.4 6.6 15 17.3 354.9 0.94 3.10 
Bulk density (clod) 10,553 g cm-3 0.47 1.2 1.35 1.5 2.1 0.81 0.10 
Bulk density (core) 7003 g cm-3 0.08 0.5 0.93 1.3 2.2 0.80 0.21 
Sand 34,912 wt% 0 11.5 38.6 61.8 100 0.96 5.72 
Silt 34,913 wt% 0 22.8 38.1 53.7 94.5 0.92 6.23 
Clay 34,913 wt% 0 9.2 22.5 32.4 96.1 0.96 2.83 
Aggregate stability 1912 wt% 0 10 38.2 65 100 0.71 15.2 
Al (DCB extract) 22,892 wt% 0 0.04 0.19 0.21 4.2 0.97 0.04 
Fe (NH4OAC extract) 21,318 wt% 0 0.1 0.44 0.57 6.7 0.81 0.22 
Chemical indicators 
Cation exchange capacity 39,600 cmol(+) kg-1 0 8.2 22.6 26.9 584.6 0.98 3.12 
Exchangeable Ca 38,068 cmol(+) kg-1 0 4.5 25.1 31.7 507.3 0.94 6.59 
Exchangeable Mg 38,122 cmol(+) kg-1 0 1.1 5.9 7 172.6 0.88 1.88 
Exchangeable K 37,702 cmol(+) kg-1 0 0.2 0.7 0.8 32.3 0.83 0.34 
Exchangeable Na 16,259 cmol(+) kg-1 0 0.1 11.5 3.7 868.4 0.94 6.05 
Base saturation 14,658 % 1.5 32.9 59.3 87.5 99 0.86 10.1 
EC (paste) 6400 dS m-1 0 0.7 5.4 4.5 247 0.82 4.26 
EC (water) 614 dS m-1 0 0.1 1.6 2.4 25 0.84 0.63 
pH (water) 37,123 – 2.7 5.5 6.3 7.6 10.7 0.88 0.36 
CaCO3 19,171 wt% 0 0.2 7.9 10.7 105.8 0.98 1.41 
Biological indicators 
Organic carbon 53,673 wt% 0 0.4 7.7 4.9 65.6 0.99 0.64 
Total nitrogen 51,641 wt% 0 0.1 0.5 0.5 41.9 0.97 0.13 
Plant available nutrients 
P (Bray-1) 3527 mg kg-1 0 2.3 26.5 30.2 1436.7 0.74 19.9 
P (Olsen) 10,000 mg kg-1 0 1.9 13.7 16.5 223.6 0.72 13.7 
P (Mehlich3) 19,139 mg kg-1 0 2.6 30.8 36.6 825.2 0.70 34.6 
K (Mehlich3) 952 mg kg-1 0 71.7 156.1 212.5 1150.9 0.72 50.5  
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inclusion in the global library. To this end, countries are invited to 
submit a subset of nationally representative samples for analysis by KSSL 
to the GSCLES through the GLOSOLAN network. This will increase the 
GSCLES predictive power and provide a means to assess and improve 
local laboratory quality by comparing the results for both spectral and 
reference measurements. Padarian et al. (2019) have illustrated how 
transfer learning, a machine learning technique that transfers some of 
the rules learnt by the more general global models to a local domain, can 
enhance the use of global spectral libraries for local application, in 
future possibly also including high quality local libraries. 

The global service is initially focused on MIR diffuse reflectance, 
which has shown the best spectral range for soil property estimation, 
however there is potential to extend the service to other spectral ranges 
at a later stage. The reference properties to be included in the spectral 
calibration library are listed in Table 3. There are plans to extend the 
calibrations to Vis-NIR benchtop and portable instruments over time. 

5. Estimation service 

Building a soil spectral library for a region of interest, for example at 
national level, and developing and applying appropriate statistical 
models to make spectral predictions of various soil properties requires a 
high level of specialised knowledge and skills and this poses a significant 
barrier to the adoption of soil spectroscopy (Benedetti and van Egmond, 
2021). The proposed GSCLES is designed to remove much of this 

complexity, so that a user anywhere in the world could upload a set of 
soil spectra recorded locally using a prescribed SOP and obtain soil 
property estimates with uncertainty estimates. 

While the core features of an estimation service can be quite simple, 
ensuring high quality predictions requires thoughtful development. 
Spectra must be compatible with the existing spectral library. First, 
spectra either need to be collected on an instrument and in a manner 
compatible with the library. Differences in sample preparation and in-
strument parameters can often be minimized by following standard 
operating procedures including routine use of reference materials (Ben 
Dor et al., 2015). Incompatibilities can also be minimized through 
judicious use of spectral pre-processing (Naes et al., 2017) or calibration 
transfer. Calibration transfer applies a spectral model developed from a 
primary instrument to a spectral dataset measured by a secondary in-
strument with statistically retained accuracy and precision (Pittaki--
Chrysodonta et al., 2021). This requires scanning a set of standard 
samples on primary and secondary instruments, which is a limitation 
requiring exchange of physical samples. Seybold et al. (2019) illustrated 
direct use of spectra across different MIR instruments without the need 
for standardization when models were built using a subset of a large 
national library appropriate for the target region. 

In addition, new spectra must fall within the feature space of the 
existing spectral library. Otherwise, predictions can be highly biased, 
particularly from machine learning algorithms (Dangal and Sanderman, 
2020). There are several relatively simple statistical methods for 

Table 2 
Number of samples in major soil groups and horizons in the KSSL spectral library and additional archive samples.  

Soil order  No of samples Soil horizon No of samples   
Spectral library Archive Total  Spectral library Archive Total 

Alfisols 5816 20,885 26,701 A 12,681 25,652 38,333 
Andisols 1543 3037 4580 B 20,403 57,193 77,596 
Aridisols 1675 10,522 12,197 C 6219 19,018 25,237 
Entisols 2788 8720 11,508 E 1144 3912 5056 
Gelisols 617 303 920 O 2603 3076 5679 
Histosols 999 655 1654 R 25 364 389 
Inceptisols 4818 11,770 16,588 Undefined 40,801 10,795 51,596 
Mollisols 12,041 24,241 36,282     
Oxisols 23 1128 1151     
Spodosols 1949 4432 6381     
Ultisols 3184 7923 11,107     
Vertisols 886 4642 5528     
Undefined 47,537 21,752 69,289     
Total 83,876 120,010 203,886 Total 83,876 120,010 203,866  

Fig. 3. Principal components score plot for first derivative MIR spectra for the Africa Soil Information Service library overlaid on the KSSL library. Data source: 
Vagen et al. (2020). 
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calculating whether a new spectrum should be considered an outlier 
(Hicks et al., 2015). Samples flagged as outliers are of high value to send 
to an analytical laboratory to further build out a wide and representative 
spectral library. Such samples should be included in the library before 
similar spectra can be used in the estimation service. 

The most straightforward way to build an estimation service is to 
host pretrained models. Several multivariate and machine learning ap-
proaches applied to large diverse soil spectral libraries have been shown 
to produce reasonably accurate and precise predictions for a number of 
soil properties (Dangal et al., 2019; Ng et al., 2020b; Wijewardane et al., 
2018). While precalculated “global” models can perform very well, 
“local” modelling approaches, where only the most relevant samples in 
the spectral library are used to build models on-the-fly, typically 
outperform the most advanced and sophisticated global models (Ram-
irez-Lopez et al., 2013) even after spiking the global models with local 
samples (Ng et al., 2022b). In an estimation service, the downside of 
local modelling approaches is that they can be computationally 
demanding, requiring a thoughtful approach to hosting the service. 
Regardless of model choice, any estimation service should provide 
predictions with estimates of uncertainty, especially when there are no 
local validation datasets. Numerous methods exist for estimating pre-
diction level uncertainty depending on the modelling approach used 
(Dangal et al., 2019; De Vries and Braak, 1995). 

GSCLES aims to provide options to users in terms of the trade-off 
between accuracy and computational resource requirements. Local 
modelling can be made available to those who have access to the 
computational resources required. We foresee global models being made 
available where resources are insufficient to permit local modelling. In 
addition to a cloud-based service, options will be explored that would 
enable users to download and run models on their own computer re-
sources. In each case, uncertainty estimates will be provided and strict 
versioning protocols observed. 

6. Growing the calibration library 

Building spectral calibrations requires matching reference soil 
property data (i.e., measured with standard methods) with spectral data 
to represent the diversity of soils in participating regions. For the 

GSCLES to have a global predictive power it should therefore be 
extended with samples that cover the global diversity in soils. For this 
reason, countries are invited to submit a selected set of samples to the 
USDA-NSSC Kellogg Soil Survey Laboratory (KSSL). Guidelines for 
sample submission to KSSL will help to ensure consistency, practical 
utility and comparability of data, in order to improve the predictive 
power of the library, are proposed in Appendix 2. 

Prior to sample submission, the sample submitter must accept that 
submitted and measured data and metadata become open and free 
public information according to USA law (Congress, 2017). USDA 
cannot omit the data or metadata from public view. Without exception, 
the results of all analysis conducted by the KSSL will be distributed 
without copyright restriction. Prior to inclusion of the data in the library 
and during the quality control process at KSSL, the sample submitter will 
be asked to review the measurement results as an additional quality 
check. It is encouraged that local laboratories analyse the samples via 
reference methods and spectra measurements for quality comparison 
and improvement and to allow for the development of transfer functions 
(see Section 8). The standard operating procedures for soil spectral 
measurements have been developed by the initiative and will be pub-
lished soon. Continued efforts are needed to develop and disseminate 
standards for sample preparation, spectral measurements, spectral data 
storage and exchange. 

In terms of data management, the GSCLES initiative aligns with the 
goals of the Global Soil Information System (GloSIS, 2021), established 
by the Global Soil Partnership and partners, and the two initiatives will 
likely be linked in the future. The GloSIS initiative aims to help countries 
structure and provide their soil data online using customised open 
source software for a multitude of applications. The initiative aims to 
stimulate data sharing and the availability of soil information for local, 
national, continental, and global decision making. Data is stored and 
shared through national, regional, and institutional nodes or soil infor-
mation systems (SIS) connected to a central portal through Open Geo-
spatial Consortium (OGC) webservices. This allows national 
customisation, control of data access and maintenance of the datasets, 
while increasing its findability and accessibility through the national 
and global portals. GloSIS envisages a distributed system design and 
open-source approach, where all linked SISs retain full control of their 
data. Soil data in GloSIS consists of point data such as soil descriptions, 
samples analysed by conventional/standard laboratory methods, and 
maps on various scales and topics, including soil spectra and soil spectral 
libraries. In the first phase (meta)data will be provided with a required 
minimum set of metadata. In the second stage, standardised data will be 
provided according to accepted vocabularies and ontology. This will 
facilitate seamless exchanges and combination of datasets, improving 
the efficiency for data analysis and soil mapping. The standardisation of 
soil data exchange, for both reference samples and associated spectral 
soil data, and the facilitation of a network of nodes that provide this data 
by the GloSIS initiative is relevant to this GCLES initiative because it will 
allow easier linkage of other soil spectral libraries for localised studies. 
This in turn will facilitate growing local predictive power, inclusiveness 
and the use of existing valuable data by allowing easier submission of 
spectra to the estimation service and translation of the result to local 
contexts. 

7. Capacity development and sustaining the service 

A growing realisation of the importance of improved soil information 
coupled with recent technical developments has fuelled a strong sense of 
urgency within the soil spectroscopy community to combine forces in 
global initiatives to foster organised science and help operationalise soil 
spectroscopy. Global coordination in soil spectroscopy is being fostered 
through the large established networks of GLOSOLAN of the Global Soil 
Partnership and the Soil Spectroscopy for Global Good network. Addi-
tional initiatives include the International Network of Soil Information 
Institutes (INSII) of the Global Soil Partnership and the IEEE P4005 

Table 3 
Soil reference properties to be analysed for the global spectral calibration 
library.   

Property Method code 

1. Total carbon, nitrogen, and sulfur 4H2a1–3a1 
2. Inorganic carbon (if appropriate) 4E1a1a1a1–2 
3. Organic carbon (calculated from total carbon and 

inorganic carbon) 
4H2a +
4E1a1a1a1–2 

4. Gypsum 4E2b1a1a1–2 
5. pH: 1:1 water 4C1a2a1a-b1 
6. pH: 1:2 0.01-M calcium chloride 4C1a2a2a-b1 
7. pH: 1:1 1-N potassium chloride C1a2a3a-b1 
8. pH: 1:50 1-N sodium fluoride (if appropriate) 4C1a1a1a-b1 
9. Cation exchange capacity, pH 7 4B1a1a1a1a-b1 
10. Ammonium acetate (pH7) exchangeable calcium, 

magnesium, potassium, sodium 
4B1a1c1–4a-b1* 

11. 1500 kPa water holding capacity 3C2a1a-b 
12. Dithionite-citrate extractable iron, aluminium 4G1b1–4a-b1* 
13. Ammonium oxalate extractable iron, aluminium G2a1a1–5a-b1 
14. Clay, silt, sand 3A1a1a 
15. Exchangeable aluminium 4B3b1a1-b1* 
16. Mehlich III phosphorus 4D6a1a-b1 
17. Olsen phosphorous (if appropriate) 4D5a1a-b1 
18. Electrical conductivity; method 4F1a1a1a1 
19. Sodium adsorption ratio and exchangeable sodium 

percentage (derived quantities) 
4F3b + 4F3a2 

Note: Except as noted with an asterisk (*), method codes are from “Kellogg Soil 
Survey Laboratory Methods Manual, SSIR-42, v. 5, USDA-NRCS (2021).” 
*to-be-published in v. 6 of SSIR-42; pending publication of v. 6 in 2022, SOPs are 
available on request to: christopher.lee@usda.gov. 
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initiative Standards and Protocols for Soil Spectroscopy. There is a need 
for securing funding for building and maintaining the services and the 
required infrastructure, shipping and analysing samples, developing 
standards and protocols, assisting laboratories to voluntarily submit soil 
samples from different countries, and through capacity development. 
The open science approach of Soil Spectroscopy for Global Good and the 
fostering of an inclusive approach to participation of countries by 
GLOSOLAN are all essential for rapid progress. 

8. Areas for further research 

The Global Soil Spectral Calibration Library & Estimation Service 
initiative is fostering collaborative research in several key areas to 
improve the efficiency and usability of the service through research 
networks of the Soil Spectroscopy for Global Good and GLOSOLAN 
initiatives. Several priority areas have been identified and are under 
active research by the global soil spectroscopy community. 

Transfer of spectra or calibrations from a primary instrument to 
other instruments of the same type or to different instruments remains a 
bottleneck to building global spectral libraries and calibrations. The 
challenge increases further down the chain of different sample prepa-
ration, sample presentation or fore-optics, instrument technology (e.g., 
Fourier-Transform vs dispersive spectrometers), and different spectral 
ranges (e.g. NIR to MIR). Machine learning approaches based on a 
limited set of standard soil samples holds promise (e.g., Pittaki-Chry-
sodonta et al., 2021), but ideally transfer would be based on a set of 
synthetic standards that are not prone to change in storage and effects of 
particle settling or changes in particle size through repeated use. For 
example, the Soil Spectroscopy for Global Good network (SoilSpec4GG, 
2022) is organizing the exchange of a set of standard samples amongst 
spectral laboratories as part of the research on calibration transfer. 
Standards developed by other groups should also be considered (e.g., 
Baldock et al., 2013). Being able to efficiently transfer calibrations 
across instruments would be transformative, allowing new instruments 
to be rapidly deployed. 

Although there has been rapid development in modelling techniques 
based on machine learning (see Section 5), further work is required on 
how spectral calibration libraries can be most effectively built and used. 
Challenges include how to best: (i) select and use local samples to spike 
the global model for optimal local application; (ii) select local samples 
for approaches that build calibrations on-the-fly using subsets of spectra; 
(iii) include spatial correlation effects; (iv) include environmental 
covariates obtained through earth observation and remote sensing; and 
(v) use various existing soil spectral libraries of different quality in a 
unified modelling effort to allow joint use of the global and of local 
libraries. 

9. Limitations of the approach 

There are several potential limitations of the approach, and the 
success of the global service will depend on the degree to which these 
can be overcome. First, is whether there is sufficient demand for soil 
spectroscopy, especially in countries with limited resources, to justify 
the global service. The demand for soil spectroscopy technology in 
countries in Africa and Asia is well established by the high level of up-
take and training requests, articulated in Section 2. This demand has 
been further confirmed by the GLOSOLAN needs and capacities assess-
ment (Benedetti and van Egmond, 2021) based on a survey of 97 labo-
ratories and experts from 56 different countries, which confirmed a 
strong interest in improving or starting use of soil spectroscopy, in 
training and tools, and support for sharing and using shared soil spec-
troscopy data, including through the decentralized approach offered by 
GLOSIS. The establishment of GLOSOLAN Regional Champion spectral 
laboratories and the strong participation in GLOSOLAN webinars (over 
2600 participants from 142 countries) provide further evidence of the 
demand. Soil spectroscopy has also been the prime tool behind 

estimation of soil properties in the new 30 m resolution soil properties 
map of Africa (Hengl et al., 2021; iSDASoil, 2021), which is being 
routinely used for land use planning and nutrient management planning. 
The fact that commercial soil testing services are also now deploying 
spectral technology at scale in Europe (Reijneveld et al., 2019) and Af-
rica (e.g., Agrocares, 2021; CNLS, 2021) further strengthens this 
evidence. 

Second, is whether a global initiative is justified in addition to efforts 
to build local capacity for developing calibrations. We have presented 
several arguments for why a centralised global calibration initiative 
offers a good alternative, or supplement, where countries find it difficult 
to commit resources to establishing a gold standard wet chemistry lab-
oratory capable of analysing a wide suite of soil properties to a high 
degree of consistency, or to invest in establishing and maintaining their 
own spectral calibrations. The results of the GLOSOLAN ring test (Fig. 2) 
demonstrate the difficulty of obtaining consistent reference data even 
for the commonly measured soil properties, and the authors have 
observed this constraint to be a major impediment to the application of 
spectral technology from over 20 years’ experience in assisting many 
resource-constrained tropical countries to develop spectral laboratories. 
While local calibrations based on high quality reference soil property 
data will often outperform a global calibration, approaches such as 
memory-based learning and transfer learning have potential to provide 
the best of both worlds, benefiting from a wider range of samples and 
properties than would otherwise be available to a local laboratory. This 
is illustrated by Fig. 3, which shows the potential for transfer of cali-
brations, even across continents. 

Third, the current global spectral library under-represents soil orders 
such as oxisols and key geographic areas such as Africa and South Asia. 
While users of the service should be made aware of the current limits of 
the geographical distributions of the calibration samples, the best test 
will be for potential users to upload their spectra and evaluate how well 
they project onto the calibration spectra data space, and to examine 
whether prediction errors are acceptable for the intended purpose. 

Fourth, countries may find it difficult to find resources for collecting 
and submitting samples or be unwilling to do so for various reasons, 
such as phytosanitary regulations or data protection concerns, which 
may limit the calibration coverage of the estimation service. Support 
from international efforts such as Soils4Africa and GLOSOLAN to help 
with submission of samples can benefit and contribute to this global 
public good. RwaSIS (2021), for instance, has demonstrated how poorly 
resourced countries can implement a national level sampling campaign, 
collecting 5750 samples from 2875 sites in less than one year. Even if a 
country does not submit samples, there might be overlaps in that sam-
ples submitted by neighbouring countries, or even continents, with 
similar soil conditions leading to local calibration value, such as illus-
trated in Fig. 3. For example, soils from Australia or South America may 
have calibration value for some Africa soils. To illustrate this, Janik 
et al. (2007) found MIR calibrations for soil organic carbon fractions 
using samples from soil types and parent materials from all States in 
Australia produced only a slight bias when estimating soil carbon frac-
tions for Kenyan soils and provided reasonable estimates of charcoal 
carbon, which is a difficult and expensive property to measure. In 
addition, with the inclusion of a subset of Kenya samples in the cali-
bration the bias was completely removed. This implies that not all 
countries need to submit samples to obtain reasonable predictions, 
provided that sufficient geographic and soil feature space coverage is 
present in the library. 

Fifth, some countries may not favour a centralised approach, prefer 
sharing spectral libraries only, prefer to not share data and samples, or 
prefer for their soil samples not to be archived. Participation in the 
service is of course completely voluntary. The main purposes of cen-
tralising the reference analysis are to provide consistent high quality 
calibration data and a wider calibration database than available to local 
laboratories leading to an efficiency and accuracy gain, with secondary 
benefits of having access to an easy-to-use spectral exploration and 
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estimation tool. The enhanced calibrations are intended to aid the 
development of local and regional solutions. We hope that individual 
countries will see the value of participating, including the value of 
leveraging calibration samples from outside their own country, and that 
contributors and the international community will see the efficiencies 
generated from having a centralised soil spectral calibration service. In 
addition, having soil samples archived at KSSL at no cost to contributing 
countries, has potential future value for countries, for example calibra-
tions can be extended to included new reference methods that may 
become available in the future. We see examples of international and 
regional cooperation working in other sectors, such as agricultural 
research and trade, that provide mutual benefits and generate effi-
ciencies. An example, is the sharing of soils data for the production of 
digital soil maps for the benefit of all (iSDASoil, 2021; SoilGrids, 2021). 

Sixth, countries that already have well established and high quality 
spectral libraries, such as France and Australia, may see limited added 
value in contributing to and using GSCLES since the quality of their local 
predictions is likely to be better than current global estimates. Benefits 
of participating are having a wider, more extended calibration set at 
limited extra costs after applying spectral and reference data transfer 
functions for in country and international use, and the possibility of a 
quality comparison with another high-quality laboratory. Participation 
will help neighbouring countries to achieve better geographic and 
feature space coverage, and therefore increase the usability of GCSLE for 
countries that are not able or willing to send in samples and/or to 
develop an extensive local library themselves. GCSLE will also provide a 
common reference to aid the development of transfer functions of 
reference measurements or to use as standard analysis method to alle-
viate transboundary challenges in regional mapping as is experienced in 
country-driven approaches as for example applied by the Global Soil 
Partnership (GLOSIS, 2021) and the EJP SOIL (EJP SOIL, 2021) project. 
Systematic offsets in maps at country borders limit their use for inter-
national and regional policy and decision making and reporting to e.g., 
UN bodies. In the longer run, an aim is to develop algorithms that allow 
transfer across spectral libraries as mentioned in Section 8. This 
strengthens the use of spectroscopy as technique, the GSCLES and 
developed and developing local libraries, allowing more localisation 
than the GCLES alone can afford while using the added value of similar 
samples from other countries. 

Seventh, laboratories with limited resources may not be able to 
invest in the same soil processing facilities or spectral equipment used by 
KSSL, which will limit the utility of the estimation service. The accom-
panying research needs outlined in Section 8, to develop algorithms to 
transfer across soil preparation methods and instruments, are critical for 
the success not only for the GSCLES but for calibration transfer and 
regular calibration updating in any initiative. 

Lastly, the objective of GSCLES is not to supplant ongoing efforts to 
standardise and improve the quality of conventional soil analytical 
laboratories or to improve the capacity of laboratories to develop their 
own spectral calibrations. On the contrary, GSCLES can provide a 
valuable benchmark against which laboratories can compare both their 
spectral and chemical reference analyses, and a valuable tool for cases 
where laboratories have insufficient resources to develop gold standard 
calibrations. There may also be a viable model whereby over time gold 

standard regional laboratories are developed, and again cross- 
referencing with GSCLES can assist such a model. 

10. Conclusion 

The proposed Soil Spectral Calibration Library and Estimation Ser-
vice, facilitated by GLOSOLAN and Soil Spectroscopy for Global Good, 
could generate enormous efficiencies and would constitute an important 
global public good. Most importantly, participating laboratories will 
have access to high quality soil reference data and will benefit from the 
global soil spectral library, which may contain similar soils from other 
regions. The coverage and value of the global calibration library will 
increase over time with smart selection and addition of new samples. 
The capacity and competitiveness of national soil laboratories on spec-
troscopy will be enhanced through participation in the initiative. 
Developing countries with limited laboratory resources stand to gain the 
most from the service as they can take advantage of soil samples that 
have been collected and characterized by other countries, with a mini-
mal investment required to submit samples and thereby further localise 
the calibrations. Since inherent limitations in the reproducibility of 
laboratory reference measurements currently affects reliability every-
where, this centralized effort would result in more reliable and lower 
cost spectral estimations and prevent enormous wastage of resources 
spent on sub-optimal calibrations in laboratories across the world, while 
increasing the potential productivity of laboratories by increasing the 
number of samples that can be analysed from the same budget. Access to 
a high-quality spectral calibration library and estimation service would 
support unprecedented high quality and quantity of soil data collection 
with lower costs, which in turn would improve evidence-based decision- 
making in many fields, including sustainable soil management, food 
security and nutrition, and climate adaptation and mitigation. Urgent 
research is required on ways to easily transfer calibrations across 
different instrument types and sample preparation methods to reap the 
potential benefit of the global service. 
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Number of samples from different countries in the KSSL spectral library and additional archive samples with analytical data.  
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Country Spectral Library Archive Total 

Albania  235 235 
Antarctica 5 52 57 
Argentina  78 78 
Australia 264  264 
Belgium 17  17 
Belize  119 119 
Bhutan 32  32 
Bolivia  11 11 
Botswana  128 128 
Brazil  185 185 
Bulgaria  168 168 
Burundi  55 55 
Cameroon 8 30 38 
Canada 121 140 261 
Chile 38 108 146 
China  203 203 
Colombia  89 89 
Congo (Democratic Republic of the)  89 89 
Costa Rica 72 42 114 
Denmark  31 31 
Ecuador  7 7 
Egypt  15 15 
El Salvador  27 27 
Estonia  21 21 
Federated States of Micronesia  83 83 
Finland  96 96 
France  17 17 
Gambia  13 13 
Georgia 28  28 
Ghana 25 68 93 
Guatemala  51 51 
Haiti 256 53 309 
Honduras  13 13 
Hungary  28 28 
Iceland  26 26 
India  153 153 
Indonesia 152 196 348 
Iraq 23  23 
Japan  159 159 
Jordan 13 82 95 
Kenya 10 128 138 
Korea, Democratic People’s Republic of  19 19 
Korea, Republic of  127 127 
Latvia  33 33 
Lebanon  16 16 
Lesotho  79 79 
Lithuania  33 33 
Malawi  140 140 
Malaysia 1 20 21 
Mali  70 70 
Mauritania  43 43 
Mexico  274 274 
Mongolia  43 43 
Morocco 20 60 80 
Nepal  51 51 
Netherlands 87  87 
New Zealand  13 13 
Nicaragua  19 19 
Niger  77 77 
Nigeria  41 41 
Norway  23 23 
Oman  40 40 
Pakistan  312 312 
Palau  133 133 
Panama 2 17 19 
Papua New Guinea  25 25 
Philippines  472 472 
Poland  298 298 
Russia 40 251 291 
Rwanda  118 118 
Samoa  106 106 
Senegal  1 1 
Somalia  29 29 
South Africa  6 6 
Spain 49  49 
Sri Lanka  7 7 

(continued on next page) 
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(continued ) 

Country Spectral Library Archive Total 

Sudan  185 185 
Suriname 15  15 
Syria  151 151 
Taiwan  263 263 
Thailand  169 169 
Togo  98 98 
Tunisia  86 86 
Turkey  15 15 
Uganda  93 93 
United Arab Emirates 59 38 97 
United Kingdom 4  4 
United States 82,535 112,314 194,849 
Uruguay  134 134 
Venezuela  58 58 
Yemen  38 38 
Zambia  118 118 
Zimbabwe  255 255 
Total 83,876 120,010 203,886  

Appendix 2 

Sample submission guidelines for inclusion in the Global Soil Spectral Calibration Library and Estimation Service.  

1 Submitted samples should represent benchmark soil series or be selected according to your choice of statistical or otherwise representative 
sampling frames across targeted landscapes, for which predictive models are intended. The overriding consideration in sample selection should be 
to capture as much of the compositional variability of the soil resources that local calibrations would serve. The program will initially accept up to 
300 samples per country, if the samples represent the soil diversity of the entire country or a major region.  

2 The sample submitter must complete a pre-formatted spreadsheet and include the data discussed in the guidelines below; to request the 
spreadsheet, e-mail spectralsamples@isric.org. Type “Global MIR Spectroscopy Initiative” in the subject line. After appropriate screening, the KSSL 
will contact the sample submitter to facilitate compliant shipments for analysis.  

3 Although not required, the sample submitter is encouraged to submit samples representing whole pedons or soil profiles to a depth of 200 cm (or 
less if bedrock or undisturbed parent material is shallower). Because the number of samples per country must be controlled, you may also choose to 
select samples that emphasize the upper 100 cm.  

4 No oils (e.g., WD-40) or other chemicals should come into contact with the samples. Extra care may be needed during sample collection and 
transport.  

5 Prior to shipment, all samples must:  
a Be thoroughly air-dried at 30 to 35◦C for 3 to 7 days.  
b Be hand-sieved (not machine processed) through a 2-mm stainless steel (not brass) sieve. Machine processing is acceptable for samples that have 

a high clay content and are not thought to contain coarse fragments.  
c Be devoid of coarse fragments and organic material that is greater than 2 mm.  
d Have a minimum mass of 200 gs; 500 gs is preferred so that sample may be archived for future additional analyses that might later be requested 

by the customer.  
• If less than 200 gs is submitted, the customer may be asked to prioritize analysis requests to ensure that soil properties of highest importance 

are measured first.  
6 Include the following information on the spreadsheet. Samples without sufficient and quality field data will not be authorized for shipment.  

a Sample collection date (mandatory)  
b Sample submitter contact information (for handling the shipment purpose only), including:  

i Name (mandatory)  
ii Professional affiliation (mandatory)  

iii Professional email address (mandatory)  
iv Professional phone number (mandatory) Note: Do NOT furnish personal contact information, only professional information.  

c Sample provenance:  
i Country of origin (mandatory)  

ii State or province of origin (mandatory)  
iii Site coordinates as decimal latitude and longitude in WGS84 (mandatory for newly collected samples, optional but highly desirable for 

previously collected samples)  
iv Pedon or location IDs (mandatory) 
v Soil classification, highest order, including classification system used, e.g., FAO-World Reference Base for Soil Resources, USDA Soil Tax-

onomy, etc.  
vi Land cover type/land use: 2 levels according to USDA-NRCS classification (mandatory if available for newly collected samples, optional for 

previously collected samples)  
vii Land use history (mandatory if available for newly collected samples, optional for previously collected samples)  

d Sampling depth range, in centimeters below the mineral soil surface; e.g., 0–5 cm, 5–25 cm, 25–75 cm, 75–100 cm (mandatory)  
e Horizon designations, including classification system used (mandatory if available)  
f Layer IDs (mandatory), such as the ID or unique identifier of a specific horizon or sampling depths of layer 
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g Photograph of site and surrounding area (mandatory for newly collected samples unless a camera is unavailable, optional for previously 
collected samples)  

7 The sample submitter is responsible for all costs of sampling, packaging, and shipping. Note: It is NOT necessary to sterilize samples prior to 
shipment to the USA.  

8 The sample submitter must accept that submitted and measured data and metadata will become free public information according to U.S. law. 
USDA cannot omit the data or metadata from public view. Without exception, the results of all analysis conducted by the KSSL will be distributed 
without copyright restriction.  

9 Once samples are received, they become the property of USDA-NRCS. When submitting samples, the sample submitter should keep subsamples in 
case they need some of the soil for future use. 
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