411 research outputs found

    A randomized, phase II study of afatinib versus cetuximab in metastatic or recurrent squamous cell carcinoma of the head and neck.

    Get PDF
    BackgroundAfatinib is an oral, irreversible ErbB family blocker that has shown activity in epidermal growth factor receptor (EGFR)-mutated lung cancer. We hypothesized that the agent would have greater antitumor activity compared with cetuximab in recurrent or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC) patients, whose disease has progressed after platinum-containing therapy.Patients and methodsAn open-label, randomized, phase II trial was conducted in 43 centers; 124 patients were randomized (1 : 1) to either afatinib (50 mg/day) or cetuximab (250 mg/m(2)/week) until disease progression or intolerable adverse events (AEs) (stage I), with optional crossover (stage II). The primary end point was tumor shrinkage before crossover assessed by investigator (IR) and independent central review (ICR).ResultsA total of 121 patients were treated (61 afatinib, 60 cetuximab) and 68 crossed over to stage II (32 and 36 respectively). In stage I, mean tumor shrinkage by IR/ICR was 10.4%/16.6% with afatinib and 5.4%/10.1% with cetuximab (P = 0.46/0.30). Objective response rate was 16.1%/8.1% with afatinib and 6.5%/9.7% with cetuximab (IR/ICR). Comparable disease control rates were observed with afatinib (50%) and cetuximab (56.5%) by IR; similar results were seen by ICR. Most common grade ≥3 drug-related AEs (DRAEs) were rash/acne (18% versus 8.3%), diarrhea (14.8% versus 0%), and stomatitis/mucositis (11.5% versus 0%) with afatinib and cetuximab, respectively. Patients with DRAEs leading to treatment discontinuation were 23% with afatinib and 5% with cetuximab. In stage II, disease control rate (IR/ICR) was 38.9%/33.3% with afatinib and 18.8%/18.8% with cetuximab.ConclusionAfatinib showed antitumor activity comparable to cetuximab in R/M HNSCC in this exploratory phase II trial, although more patients on afatinib discontinued treatment due to AEs. Sequential EGFR/ErbB treatment with afatinib and cetuximab provided sustained clinical benefit in patients after crossover, suggesting a lack of cross-resistance

    DNA repair biomarkers XPF and phospho-MAPKAP kinase 2 correlate with clinical outcome in advanced head and neck cancer.

    Get PDF
    BackgroundInduction chemotherapy is a common therapeutic option for patients with locoregionally-advanced head and neck cancer (HNC), but it remains unclear which patients will benefit. In this study, we searched for biomarkers predicting the response of patients with locoregionally-advanced HNC to induction chemotherapy by evaluating the expression pattern of DNA repair proteins.MethodsExpression of a panel of DNA-repair proteins in formalin-fixed paraffin embedded specimens from a cohort of 37 HNC patients undergoing platinum-based induction chemotherapy prior to definitive chemoradiation were analyzed using quantitative immunohistochemistry.ResultsWe found that XPF (an ERCC1 binding partner) and phospho-MAPKAP Kinase 2 (pMK2) are novel biomarkers for HNSCC patients undergoing platinum-based induction chemotherapy. Low XPF expression in HNSCC patients is associated with better response to induction chemoradiotherapy, while high XPF expression correlates with a worse response (p = 0.02). Furthermore, low pMK2 expression was found to correlate significantly with overall survival after induction plus chemoradiation therapy (p = 0.01), suggesting that pMK2 may relate to chemoradiation therapy.ConclusionsWe identified XPF and pMK2 as novel DNA-repair biomarkers for locoregionally-advanced HNC patients undergoing platinum-based induction chemotherapy prior to definitive chemoradiation. Our study provides insights for the use of DNA repair biomarkers in personalized diagnostics strategies. Further validation in a larger cohort is indicated

    Genetic Landscape of Human Papillomavirus–Associated Head and Neck Cancer and Comparison to Tobacco-Related Tumors

    Get PDF
    Head and neck cancer is the fifth most common cancer worldwide. It is often amenable to curative intent therapy when localized to the head and neck region, but it carries a poor prognosis when it is recurrent or metastatic. Therefore, initial treatment decisions are critical to improve patient survival. However, multimodality therapy used with curative intent is toxic. The balance between offering intensive versus tolerable and function-preserving therapy has been thrown into sharp relief with the recently described epidemic of human papillomavirus–associated head and neck squamous cell carcinomas characterized by improved clinical outcomes compared with smoking-associated head and neck tumors. Model systems and clinical trials have been slow to address the clinical questions that face the field to date. With this as a background, a host of translational studies have recently reported the somatic alterations in head and neck cancer and have highlighted the distinct genetic and biologic differences between viral and tobacco-associated tumors. This review seeks to summarize the main findings of studies, including The Cancer Genome Atlas, for the clinician scientist, with a goal of leveraging this new knowledge toward the betterment of patients with head and neck cancer

    Collective Modes of Tri-Nuclear Molecules

    Get PDF
    A geometrical model for tri-nuclear molecules is presented. An analytical solution is obtained provided the nuclei, which are taken to be prolately deformed, are connected in line to each other. Furthermore, the tri-nuclear molecule is composed of two heavy and one light cluster, the later sandwiched between the two heavy clusters. A basis is constructed in which Hamiltonians of more general configurations can be diagonalized. In the calculation of the interaction between the clusters higher multipole deformations are taken into account, including the hexadecupole one. A repulsive nuclear core is introduced in the potential in order to insure a quasi-stable configuration of the system. The model is applied to three nuclear molecules, namely 96^{96}Sr + 10^{10}Be + 146^{146}Ba, 108^{108}Mo + 10^{10}Be + 134^{134}Te and 112^{112}Ru + 10^{10}Be + 130^{130}Sn.Comment: 24 pages, 9 figure

    Immunological and mass spectrometry-based approaches to determine thresholds of the mutagenic DNA adduct O 6 -methylguanine in vivo

    Get PDF
    © 2018, Springer-Verlag GmbH Germany, part of Springer Nature. N-nitroso compounds are alkylating agents, which are widespread in our diet and the environment. They induce DNA alkylation adducts such as O 6 -methylguanine (O 6 -MeG), which is repaired by O 6 -methylguanine-DNA methyltransferase (MGMT). Persistent O 6 -MeG lesions have detrimental biological consequences like mutagenicity and cytotoxicity. Due to its pivotal role in the etiology of cancer and in cytotoxic cancer therapy, it is important to detect and quantify O 6 -MeG in biological specimens in a sensitive and accurate manner. Here, we used immunological approaches and established an ultra performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) to monitor O 6 -MeG adducts. First, colorectal cancer (CRC) cells were treated with the methylating anticancer drug temozolomide (TMZ). Immunofluorescence microscopy and an immuno-slot blot assay, both based on an adduct-specific antibody, allowed for the semi-quantitative, dose-dependent assessment of O 6 -MeG in CRC cells. Using the highly sensitive and specific UPLC–MS/MS, TMZ-induced O 6 -MeG adducts were quantified in CRC cells and even in peripheral blood mononuclear cells exposed to clinically relevant TMZ doses. Furthermore, all methodologies were used to detect O 6 -MeG in wildtype (WT) and MGMT-deficient mice challenged with the carcinogen azoxymethane. UPLC–MS/MS measurements and dose–response modeling revealed a non-linear formation of hepatic and colonic O 6 -MeG adducts in WT, whereas linear O 6 -MeG formation without a threshold was observed in MGMT-deficient mice. Collectively, the UPLC–MS/MS analysis is highly sensitive and specific for O 6 -MeG, thereby allowing for the first time for the determination of a genotoxic threshold upon exposure to O 6 -methylating agents. We envision that this method will be instrumental to monitor the efficacy of methylating chemotherapy and to assess dietary exposures

    Toxic Epidermal Necrolysis after Pemetrexed and Cisplatin for Non-Small Cell Lung Cancer in a Patient with Sharp Syndrome

    Get PDF
    Background: Pemetrexed is an antifolate drug approved for maintenance and second-line therapy, and, in combination with cisplatin, for first-line treatment of advanced nonsquamous non-small cell lung cancer. The side-effect profile includes fatigue, hematological and gastrointestinal toxicity, an increase in hepatic enzymes, sensory neuropathy, and pulmonary and cutaneous toxicity in various degrees. Case Report: We present the case of a 58-year-old woman with history of Sharp's syndrome and adenocarcinoma of the lung, who developed toxic epidermal necrolysis after the first cycle of pemetrexed, including erythema, bullae, extensive skin denudation, subsequent systemic inflammation and severe deterioration in general condition. The generalized skin lesions occurred primarily in the previous radiation field and responded to immunosuppressive treatment with prednisone. Conclusion: Although skin toxicity is a well-known side effect of pemetrexed, severe skin reactions after pemetrexed administration are rare. Caution should be applied in cases in which pemetrexed is given subsequent to radiation therapy, especially in patients with pre-existing skin diseases

    A systematic review of methods used to study fish in saltmarsh flats

    Get PDF
    There is a growing body of research highlighting the importance of saltmarshes as habitats for fish for feeding, refuge from predation and reproduction. However, more work is needed on fish on vegetated marsh flats (or surfaces). We reviewed 60 studies that used 21 methods to sample fish assemblages on saltmarsh flats. Drop samplers, fyke nets and pop nets were most frequently employed, with considerably more studies being conducted in graminoid than succulent marsh. Reporting of sampling temporal and tidal details, environmental variables and fish attributes was inconsistent. Most of the papers focussed on one or more of conservation management, comparisons among habitat types, and the use of saltmarsh (including fish activity type or residency status). Important potential areas of research include the relationships between the fish assemblages of saltmarsh flats and coastal fisheries, the effects of invasive plant species and marsh restoration efforts in areas outside the United States, and the potential effects of sea-level rise on vegetated flats as fish habitat. Sampling methods that provide density measures are likely to be most useful for most of this research. Thus, drop samplers and pop nets are an appropriate choice, the former in graminoid saltmarshes and the latter in succulent saltmarshes

    The Evolving Transcriptome of Head and Neck Squamous Cell Carcinoma: A Systematic Review

    Get PDF
    BACKGROUND: Numerous studies were performed to illuminate mechanisms of tumorigenesis and metastases from gene expression profiles of Head and Neck Squamous Cell Carcinoma (HNSCC). The objective of this review is to conduct a network-based meta-analysis to identify the underlying biological signatures of the HNSCC transcriptome. METHODS AND FINDINGS: We included 63 HNSCC transcriptomic studies into three specific categories of comparisons: Pre, premalignant lesions v.s. normal; TvN, primary tumors v.s. normal; and Meta, metastatic or invasive v.s. primary tumors. Reported genes extracted from the literature were systematically analyzed. Participation of differential gene activities across three progressive stages deciphered the evolving nature of HNSCC. In total, 1442 genes were verified, i.e. reported at least twice, with ECM1, EMP1, CXCL10 and POSTN shown to be highly reported across all three stages. Knowledge-based networks of the HNSCC transcriptome were constructed, demonstrating integrin signaling and antigen presentation pathways as highly enriched. Notably, functional estimates derived from topological characteristics of integrin signaling networks identified such important genes as ITGA3 and ITGA5, which were supported by findings of invasiveness in vitro. Moreover, we computed genome-wide probabilities of reporting differential gene activities for the Pre, TvN, and Meta stages, respectively. Results highlighted chromosomal regions of 6p21, 19p13 and 19q13, where genomic alterations were shown to be correlated with the nodal status of HNSCC. CONCLUSIONS: By means of a systems-biology approach via network-based meta-analyses, we provided a deeper insight into the evolving nature of the HNSCC transcriptome. Enriched canonical signaling pathways, hot-spots of transcriptional profiles across the genome, as well as topologically significant genes derived from network analyses were highlighted for each of the three progressive stages, Pre, TvN, and Meta, respectively
    corecore