324 research outputs found

    The Stellar Populations of the Cetus Dwarf Spheroidal Galaxy

    Get PDF
    We present Hubble Space Telescope Wide Field Planetary Camera 2 photometry in the V and I passbands of the recently discovered Local Group dwarf spheroidal galaxy in Cetus. Our color-magnitude diagram extends from above the first ascent red giant branch (RGB) tip to approximately half a magnitude below the horizontal branch (HB). Adopting a reddening of E(B-V) = 0.03, the magnitude of the RGB tip yields a distance modulus of (m-M)o = 24.46 +/- 0.14. After applying the reddening and distance modulus, we have utilized the color distribution of RGB stars to determine a mean metal abundance of [Fe/H] = -1.7 on the Zinn & West scale with an intrinsic internal abundance dispersion of +/-0.2 dex. An indirect calculation of the HB morphology of Cetus based on the mean dereddened HB color yields (B-R)/(B+V+R) = -0.91 +/- 0.09, which represents an HB that is redder than what can be attributed solely to Cetus' metal abundance. As such, Cetus suffers from the `second parameter effect' in which another parameter besides metallicity is controlling the HB morphology. If we adopt the conventional `age hypothesis' explanation for the second parameter effect, then this implies that Cetus is 2-3 Gyr younger than Galactic globular clusters at its metallicity.Comment: 13 pages, 8 figures, Accepted for publication in the March 10, 2002 Ap

    Tidal dwarfs in the M81 group: the second generation?

    Full text link
    We derive quantitative star formation histories of the four suspected tidal dwarf galaxies in the M81 group, HolmbergIX, BK3N, Arp-loop (A0952+69), and Garland, using Hubble Space Telescope/Wide Field Planetary Camera2 images in F606W and F814W obtained as part of a Snapshot survey of dwarf galaxies in the Local Universe. We consider the spatial distribution and ages of resolved stellar populations in these dwarf irregular galaxies. We use synthetic color-magnitude diagrams to derive the ages of the major star formation episodes, star formation rates, and approximate metallicity ranges. All the galaxies show evidence of continuous star formation between about 20 and 200 Myr ago with star formation rates in the range 7.5*10^(-3)- 7.6*10^(-4) M(sun)/yr. The metallicity of the detected stars spans a wide range, and have lower than solar abundance. A possible scenario is that all four dwarf galaxies were formed from material in the metal-poor outer part of the giant spiral galaxy M81 after the tidal interaction between M81, M82, and NGC3077 about 200 Myr ago. While we do not directly detect pronounced old stellar populations, the photometric limits of our data are such that the presence of such a population is not entirely ruled out

    Addendum: "The Dynamics of M15: Observations of the Velocity Dispersion Profile and Fokker-Planck Models" (ApJ, 481, 267 [1997])

    Full text link
    It has recently come to our attention that there are axis scale errors in three of the figures of Dull et al. (1997, hereafter D97). D97 presented Fokker-Planck models for the collapsed-core globular cluster M15 that include a dense, centrally concentrated population of neutron stars and massive white dwarfs, but do not include a central black hole. In this Addendum, we present corrected versions of Figures 9, 10, and 12, and an expanded version of Figure 6. This latter figure, which shows the full run of the velocity dispersion profile, indicates that the D97 model predictions are in good agreement with the moderately rising HST-STIS velocity dispersion profile for M15 reported by Gerssen et al. (2002, astro-ph/0209315). Thus, a central black hole is not required to fit the new STIS velocity measurements, provided that there is a sufficient population of neutron stars and massive white dwarfs. This conclusion is consistent with the findings of Gerssen et al. (2002, astro-ph/0210158), based on a reapplication of their Jeans equation analysis using the corrected mass-to-light profile (Figure 12) for the D97 models.Comment: 4 pages, 4 figures, submitted to Ap

    Phylogenetically Driven Sequencing of Extremely Halophilic Archaea Reveals Strategies for Static and Dynamic Osmo-response

    Full text link
    © 2014. Organisms across the tree of life use a variety of mechanisms to respond to stress-inducing fluctuations in osmotic conditions. Cellular response mechanisms and phenotypes associated with osmoadaptation also play important roles in bacterial virulence, human health, agricultural production and many other biological systems. To improve understanding of osmoadaptive strategies, we have generated 59 high-quality draft genomes for the haloarchaea (a euryarchaeal clade whose members thrive in hypersaline environments and routinely experience drastic changes in environmental salinity) and analyzed these new genomes in combination with those from 21 previously sequenced haloarchaeal isolates. We propose a generalized model for haloarchaeal management of cytoplasmic osmolarity in response to osmotic shifts, where potassium accumulation and sodium expulsion during osmotic upshock are accomplished via secondary transport using the proton gradient as an energy source, and potassium loss during downshock is via a combination of secondary transport and non-specific ion loss through mechanosensitive channels. We also propose new mechanisms for magnesium and chloride accumulation. We describe the expansion and differentiation of haloarchaeal general transcription factor families, including two novel expansions of the TATA-binding protein family, and discuss their potential for enabling rapid adaptation to environmental fluxes. We challenge a recent high-profile proposal regarding the evolutionary origins of the haloarchaea by showing that inclusion of additional genomes significantly reduces support for a proposed large-scale horizontal gene transfer into the ancestral haloarchaeon from the bacterial domain. The combination of broad (17 genera) and deep (≥5 species in four genera) sampling of a phenotypically unified clade has enabled us to uncover both highly conserved and specialized features of osmoadaptation. Finally, we demonstrate the broad utility of such datasets, for metagenomics, improvements to automated gene annotation and investigations of evolutionary processes

    Galaxy Flow in the Canes Venatici I Cloud

    Get PDF
    We present an analysis of Hubble Space Telescope/WFPC2 images of eighteen galaxies in the Canes Venatici I cloud. We derive their distances from the luminosity of the tip of the red giant branch stars with a typical accuracy of ~12 %. The resulting distances are 3.9 Mpc (UGC 6541), 4.9 Mpc (NGC 3738), 3.0 Mpc (NGC 3741), 4.5 Mpc (KK 109), >6.3 Mpc (NGC 4150), 4.2 Mpc (UGC 7298), 4.5 Mpc (NGC 4244), 4.6 Mpc (NGC 4395), 4.9 Mpc (UGC 7559), 4.2 Mpc (NGC 4449), 4.4 Mpc (UGC 7605), 4.6 Mpc (IC 3687), 4.7 Mpc (KK 166), 4.7 Mpc (NGC 4736), 4.2 Mpc (UGC 8308), 4.3 Mpc (UGC 8320), 4.6 Mpc (NGC 5204), and 3.2 Mpc (UGC 8833). The CVn I cloud has a mean radial velocity of 286 +- 9 km/s, a mean distance of 4.1 +- 0.2 Mpc, a radial velocity dispersion of 50 km/s, a mean projected radius of 760 kpc, and a total blue luminosity of 2.2 * 10^{10} L_{\sun}. Assuming virial or closed orbital motions for the galaxies, we estimated their virial and their orbital mass-to-luminosity ratio to be 176 and 88 M_{\sun}/L_{\sun}, respectively. However, the CVn I cloud is characterized by a crossing time of 15 Gyr, and is thus far from a state of dynamical equilibrium. The large crossing time for the cloud, its low content of dSph galaxies (<6 < 6 %), and the almost ``primordial'' shape of its luminosity function show that the CVn I complex is in a transient dynamical state, driven rather by the free Hubble expansion than by galaxy interactions.Comment: 23 pages, 6 figures, A&A in preparation. The version does not include Figure 2. High resolution figures 1 and 2 (11311k) are available at http://luna.sao.ru/~sme/figsCVn.tar.g

    Elemental Abundance Ratios in Stars of the Outer Galactic Disk. II. Field Red Giants

    Get PDF
    We summarize a selection process to identify red giants in the direction of the southern warp of the Galactic disk, employing VI_C photometry and multi-object spectroscopy. We also present results from follow-up high-resolution, high-S/N echelle spectroscopy of three field red giants, finding [Fe/H] values of about -0.5. The field stars, with Galactocentric distances estimated at 10 to 15 kpc, support the conclusion of Yong, Carney, & de Almeida (2005) that the Galactic metallicity gradient disappears beyond R_GC values of 10 to 12 kpc for the older stars and clusters of the outer disk. The field and cluster stars at such large distances show very similar abundance patterns, and, in particular, all show enhancements of the "alpha" elements O, Mg, Si, Ca, and Ti and the r-process element Eu. These results suggest that Type II supernovae have been significant contributors to star formation in the outer disk relative to Type Ia supernovae within the past few Gyrs. We also compare our results with those available for much younger objects. The limited results for the H II regions and B stars in the outer disk also suggest that the radial metallicity gradient in the outer disk is shallow or absent. The much more extensive results for Cepheids confirm these trends, and that the change in slope of the metallicity gradient may occur at a larger Galactocentric distance than for the older stars and clusters. However, the younger stars also show rising alpha element enhancements with increasing R_GC, at least beyond 12 kpc. These trends are consistent with the idea of a progressive growth in the size of the Galactic disk with time, and episodic enrichment by Type II supernovae as part of the disk's growth. [Abridged]Comment: Accepted for publication in A
    corecore