9,321 research outputs found
Optical absorption of divalent metal tungstates: Correlation between the band-gap energy and the cation ionic radius
We have carried out optical-absorption and reflectance measurements at room
temperature in single crystals of AWO4 tungstates (A = Ba, Ca, Cd, Cu, Pb, Sr,
and Zn). From the experimental results their band-gap energy has been
determined to be 5.26 eV (BaWO4), 5.08 eV (SrWO4), 4.94 eV (CaWO4), 4.15 eV
(CdWO4), 3.9-4.4 eV (ZnWO4), 3.8-4.2 eV (PbWO4), and 2.3 eV (CuWO4). The
results are discussed in terms of the electronic structure of the studied
tungstates. It has been found that those compounds where only the s electron
states of the A2+ cation hybridize with the O 2p and W 5d states (e.g BaWO4)
have larger band-gap energies than those where also p, d, and f states of the
A2+ cation contribute to the top of the valence band and the bottom of the
conduction band (e.g. PbWO4). The results are of importance in view of the
large discrepancies existent in prevoiusly published data.Comment: 16 pages, 3 figures, 1 tabl
The State of the Circumstellar Medium Surrounding Gamma-Ray Burst Sources and its Effect on the Afterglow Appearance
We present a numerical investigation of the contribution of the presupernova
ejecta of Wolf-Rayet stars to the environment surrounding gamma-ray bursts
(GRBs), and describe how this external matter can affect the observable
afterglow characteristics. An implicit hydrodynamic calculation for massive
stellar evolution is used here to provide the inner boundary conditions for an
explicit hydrodynamical code to model the circumstellar gas dynamics. The
resulting properties of the circumstellar medium are then used to calculate the
deceleration of a relativistic, gas-dynamic jet and the corresponding afterglow
light curve produced as the shock wave propagates through the shocked-wind
medium. We find that variations in the stellar wind drive instabilities that
may produce radial filaments in the shocked-wind region. These comet-like tails
of clumps could give rise to strong temporal variations in the early afterglow
lightcurve. Afterglows may be expected to differ widely among themselves,
depending on the angular anisotropy of the jet and the properties of the
stellar progenitor; a wide diversity of behaviors may be the rule, rather than
the exception.Comment: 17 pages, 7 figures, ApJ in pres
Investigation of acceptor levels and hole scattering mechanisms in p-gallium selenide by means of transport measurements under pressure
The effect of pressure on acceptor levels and hole scattering mechanisms in
p-GaSe is investigated through Hall effect and resistivity measurements under
quasi-hydrostatic conditions up to 4 GPa. The pressure dependence of the hole
concentration is interpreted through a carrier statistics equation with a
single (nitrogen) or double (tin) acceptor whose ionization energies decrease
under pressure due to the dielectric constant increase. The pressure effect on
the hole mobility is also accounted for by considering the pressure
dependencies of both the phonon frequencies and the hole-phonon coupling
constants involved in the scattering rates.Comment: 13 pages, Latex, 4 ps figures. to appear in High Pressure Research 69
(1997
Una premisa para el cambio conceptual : el cambio metodológico
This paper outlines some of the differences between preconceptual and Aristotelian methodology and relates the origin of preconcepts to the ordinary conception of Science underlying in textbooks and laboratory manuals. A classroom strategy aimed at changing the prevailing methodology and developing a new basis for conceptual reconstruction is put forward
High-pressure study of substrate material ScAlMgO4
We report on the structural properties of ScAlMgO4 studied under
quasi-hydrostatic pressure using synchrotron high-pressure x-ray diffraction up
to 40 GPa. We also report on single-crystal studies of ScAlMgO4 performed at
300 K and 100 K. We found that the low-pressure phase remains stable up to 24
GPa. At 28 GPa, we detected a reversible phase transformation. The
high-pressure phase is assigned to a monoclinic distortion of the low-pressure
phase. No additional phase transition is observed up to 40 GPa. In addition,
the equation of state, compressibility tensor, and thermal expansion
coefficients of ScAlMgO4 are determined. The bulk modulus of ScAlMgO4 is found
to be 143(8) GPa, with a strong compressibility anisotropy. For the trigonal
low-pressure phase, the compressibility along the c-axis is twice than
perpendicular one. A perfect lattice match with ZnO is retained under pressure
in the pressure range of stability of wurtzite ZnO.Comment: 22 pages, 5 figures, 4 tables, 24 reference
Echo Emission From Dust Scattering and X-Ray Afterglows of Gamma-Ray Bursts
We investigate the effect of X-ray echo emission in gamma-ray bursts (GRBs).
We find that the echo emission can provide an alternative way of understanding
X-ray shallow decays and jet breaks. In particular, a shallow decay followed by
a "normal" decay and a further rapid decay of X-ray afterglows can be together
explained as being due to the echo from prompt X-ray emission scattered by dust
grains in a massive wind bubble around a GRB progenitor. We also introduce an
extra temporal break in the X-ray echo emission. By fitting the afterglow light
curves, we can measure the locations of the massive wind bubbles, which will
bring us closer to finding the mass loss rate, wind velocity, and the age of
the progenitors prior to the GRB explosions.Comment: 25 pages, 3 figures, 2 tables. Accepted for publication in Ap
High resolution imaging of NGC 2346 with GSAOI/GeMS: disentangling the planetary nebula molecular structure to understand its origin and evolution
We present high spatial resolution ( 60--90 milliarcseconds) images
of the molecular hydrogen emission in the Planetary Nebula (PN) NGC 2346. The
data were acquired during the System Verification of the Gemini Multi-Conjugate
Adaptive Optics System + Gemini South Adaptive Optics Imager. At the distance
of NGC 2346, 700 pc, the physical resolution corresponds to 56 AU,
which is slightly higher than that an [N II] image of NGC 2346 obtained with
HST/WFPC2. With this unprecedented resolution we were able to study in detail
the structure of the H gas within the nebula for the first time. We found
it to be composed of knots and filaments, which at lower resolution had
appeared to be a uniform torus of material. We explain how the formation of the
clumps and filaments in this PN is consistent with a mechanism in which a
central hot bubble of nebular gas surrounding the central star has been
depressurized, and the thermal pressure of the photoionized region drives the
fragmentation of the swept-up shell.Comment: accepted in ApJ (17 pages, 7 figures, 1 Table
Clouds in the atmospheres of extrasolar planets. II. Thermal emission spectra of Earth-like planets influenced by low and high-level clouds
We study the impact of multi-layered clouds (low-level water and high-level
ice clouds) on the thermal emission spectra of Earth-like planets orbiting
different types of stars. Clouds have an important influence on such planetary
emission spectra due to their wavelength dependent absorption and scattering
properties. We also investigate the influence of clouds on the ability to
derive information about planetary surface temperatures from low-resolution
spectra.Comment: accepted for publication in A&
- …
