163 research outputs found

    Strategies for executing federated queries in SPARQL1.1

    Get PDF
    A common way for exposing RDF data on the Web is by means of SPARQL endpoints which allow end users and applications to query just the RDF data they want. However, servers hosting SPARQL endpoints often restrict access to the data by limiting the amount of results returned per query or the amount of queries per time that a client may issue. As this may affect query completeness when using SPARQL1.1's federated query extension, we analysed different strategies to implement federated queries with the goal to circumvent endpoint limits. We show that some seemingly intuitive methods for decomposing federated queries provide unsound results in the general case, and provide fixes or discuss under which restrictions these recipes are still applicable. Finally, we evaluate the proposed strategies for checking their feasibility in practice

    Epizootiology of Trichiniasis in Wildlife From a Southcentral Iowa Area

    Get PDF
    Sixteen species of wildlife, comprising 1,925 specimens, were examined for Trichinella spiralis during the 1953-1960 period. Species found to be infected with parasites were rat, fox, mink, raccoon, and badger. Initially a high incidence of trichinae was found in the rat, fox, and mink, followed by a marked decline. There is some evidence of a cyclic occurrence in mink. The possible significance of wildlife reservoirs as vectors of trichiniaisis to grain-fed swine is discussed

    GUN: An Efficient Execution Strategy for Querying the Web of Data

    Get PDF
    International audienceLocal-As-View (LAV) mediators provide a uniform interface to a federation of heterogeneous data sources, attempting to execute queries against the federation. LAV mediators rely on query rewriters to translate mediator queries into equivalent queries on the federated data sources. The query rewriting problem in LAV mediators has shown to be NP-complete, and there may be an exponential number of rewritings, making unfeasible the execution or even generation of all the rewritings for some queries. The complexity of this problem can be particularly impacted when queries and data sources are described using SPARQL conjunctive queries, for which millions of rewritings could be generated. We aim at providing an efficient solution to the problem of executing LAV SPARQL query rewritings while the gathered answer is as complete as possible. We formulate the Result-Maximal k-Execution problem (ReMakE) as the problem of maximizing the query results obtained from the execution of only k rewritings. Additionally, a novel query execution strategy called GUN is proposed to solve the ReMakE problem. Our experimental evaluation demonstrates that GUN outperforms traditional techniques in terms of answer completeness and execution time

    Quantification of Dynamic 11C-Phenytoin PET Studies

    Get PDF
    The overexpression of P-glycoprotein (Pgp) is thought to be an important mechanism of pharmacoresistance in epilepsy. Recently, 11C-phenytoin has been evaluated preclinically as a tracer for Pgp. The aim of the present study was to assess the optimal plasma kinetic model for quantification of 11C-phenytoin studies in humans. Methods: Dynamic 11C-phenytoin PET scans of 6 healthy volunteers with arterial sampling were acquired twice on the same day and analyzed using single- and 2-tissue-compartment models with and without a blood volume parameter. Global and regional test– retest (TRT) variability was determined for both plasma to tissue rate constant (K1) and volume of distribution (VT). Results: According to the Akaike information criterion, the reversible single-tissue-compartment model with blood volume parameter was the preferred plasma input model. Mean TRT variability ranged from 1.5% to 16.9% for K1 and from 0.5% to 5.8% for VT. Larger volumes of interest showed better repeatabilities than smaller regions. A 45-min scan provided essentially the same K1 and VT values as a 60-min scan. Conclusion: A reversible single-tissue-compartment model with blood volume seems to be a good candidate model for quantification of dynamic 11C-phenytoin studies. Scan duration may be reduced to 45 min without notable loss of accuracy and precision of both K1 and VT, although this still needs to be confirmed under pathologic conditions

    Quantification of the novel N-methyl-D-aspartate receptor ligand [11C]GMOM in man

    Get PDF
    [11C]GMOM (carbon-11 labeled N-(2-chloro-5-thiomethylphenyl)-N0-(3-[11C]methoxy-phenyl)-N0-methylguanidine) is a PET ligand that binds to the N-methyl-D-aspartate receptor with high specificity and affinity. The purpose of this first in human study was to evaluate kinetics of [11C]GMOM in the healthy human brain and to identify the optimal pharmacokinetic model for quantifying these kinetics, both before and after a pharmacological dose of S-ketamine. Dynamic 90 min [11C]GMOM PET scans were obtained from 10 subjects. In six of the 10 subjects, a second PET scan was performed following an S-ketamine challenge. Metabolite corrected plasma input functions were obtained for all scans. Regional time activity curves were fitted to various single- and two-tissue compartment models. Best fits were obtained using a two-tissue irreversible model with blood volume parameter. The highest net influx rate (Ki) of [11C]GMOM was observed in regions with high N-methyl-D-aspartate receptor density, such as hippocampus and thalamus. A significant reduction in the Ki was observed for the entire brain after administration of ketamine, suggesting specific binding to the N-methyl-D-aspartate receptors. This initial study suggests that the [11C]GMOM could be used for quantification of N-methyl-D-aspartate receptors

    When Limb Surgery Has Become the Only Life-Saving Therapy in FOP: A Case Report and Systematic Review of the Literature

    Get PDF
    Fibrodysplasia ossificans progressiva (FOP) is a rare disease in which heterotopic ossification (HO) is formed in muscles, tendons and ligaments. Traumatic events, including surgery, are discouraged as this is known to trigger a flare-up with risk of subsequent HO. Anesthetic management for patients with FOP is challenging. Cervical spine fusion, ankylosis of the temporomandibular joints, thoracic insufficiency syndrome, restrictive chest wall disease, and sensitivity to oral trauma complicate airway management and anesthesia and pose life-threatening risks. We report a patient with FOP suffering from life-threatening antibiotic resistant bacterial infected ulcers of the right lower leg and foot. The anesthetic, surgical and postoperative challenges and considerations are discussed. In addition, the literature on limb surgeries of FOP patients is systemically reviewed. The 44 year-old female patient was scheduled for a through-knee amputation. Airway and pulmonary evaluation elicited severe abnormalities, rendering standard general anesthesia a rather complication-prone approach in this patient. Thus, regional anesthesia, supplemented with intravenous analgosedation and N2O-inhalation were performed in this case. The surgery itself was securely planned to avoid any unnecessary tissue damage. Postoperatively the patient was closely monitored for FOP activity by ultrasound and [18F]PET/CT-scan. One year after surgery, a non-significant amount of HO had formed at the operated site. The systematic review revealed seventeen articles in which thirty-two limb surgeries in FOP patients were described. HO reoccurrence was described in 90% of the cases. Clinical improvement due to improved mobility of the operated joint was noted in 16% of the cases. It should be noted, though, that follow-up time was limited and no or inadequate imaging modalities were used to follow-up in the majority of these cases. To conclude, if medically urgent, limb surgery in FOP is possible even when general anesthesia is not preferred. The procedure should be well-planned, alternative techniques or procedures should be tested prior to surgery and special attention should be paid to the correct positioning of the patient. According to the literature recurrent HO should be expected after surgery of a limb, even though it was limited in the case described

    Increased Expression of AQP 1 and AQP 5 in Rat Lungs Ventilated with Low Tidal Volume is Time Dependent

    Get PDF
    Background and GoalsMechanical ventilation (MV) can induce or worsen pulmonary oedema. Aquaporins (AQPs) facilitate the selective and rapid bi-directional movement of water. Their role in the development and resolution of pulmonary oedema is controversial. Our objectives are to determine if prolonged MV causes lung oedema and changes in the expression of AQP 1 and AQP 5 in rats.Methods25 male Wistar rats were subjected to MV with a tidal volume of 10 ml/kg, during 2 hours (n = 12) and 4 hours (n = 13). Degree of oedema was compared with a group of non-ventilated rats (n = 5). The expression of AQP 1 and AQP 5 were determined by western immunoblotting, measuring the amount of mRNA (previously amplified by RT-PCR) and immunohistochemical staining of AQPs 1 and 5 in lung samples from all groups.ResultsLung oedema and alveolar-capillary membrane permeability did not change during MV. AQP-5 steady state levels in the western blot were increased (p<0.01) at 2 h and 4 h of MV. But in AQP-1 expression these differences were not found. However, the amount of mRNA for AQP-1 was increased at 2 h and 4 h of MV; and for AQP 5 at 4 h of MV. These findings were corroborated by representative immunohistochemical lung samples.ConclusionIn lungs from rats ventilated with a low tidal volume the expression of AQP 5 increases gradually with MV duration, but does not cause pulmonary oedema or changes in lung permeability. AQPs may have a protective effect against the oedema induced by MV

    Fast Computing Betweenness Centrality with Virtual Nodes on Large Sparse Networks

    Get PDF
    Betweenness centrality is an essential index for analysis of complex networks. However, the calculation of betweenness centrality is quite time-consuming and the fastest known algorithm uses time and space for weighted networks, where and are the number of nodes and edges in the network, respectively. By inserting virtual nodes into the weighted edges and transforming the shortest path problem into a breadth-first search (BFS) problem, we propose an algorithm that can compute the betweenness centrality in time for integer-weighted networks, where is the average weight of edges and is the average degree in the network. Considerable time can be saved with the proposed algorithm when , indicating that it is suitable for lightly weighted large sparse networks. A similar concept of virtual node transformation can be used to calculate other shortest path based indices such as closeness centrality, graph centrality, stress centrality, and so on. Numerical simulations on various randomly generated networks reveal that it is feasible to use the proposed algorithm in large network analysis
    corecore