754 research outputs found

    First and second order transition of frustrated Heisenberg spin systems

    Full text link
    Starting from the hypothesis of a second order transition we have studied modifications of the original Heisenberg antiferromagnet on a stacked triangular lattice (STA-model) by the Monte Carlo technique. The change is a local constraint restricting the spins at the corners of selected triangles to add up to zero without stopping them from moving freely (STAR-model). We have studied also the closely related dihedral and trihedral models which can be classified as Stiefel models. We have found indications of a first order transition for all three modified models instead of a universal critical behavior. This is in accordance with the renormalization group investigations but disagrees with the Monte Carlo simulations of the original STA-model favoring a new universality class. For the corresponding x-y antiferromagnet studied before, the second order nature of the transition could also not be confirmed.Comment: 31 pages, 13 figures, to be published in Euro. J. Phys.

    A Spin-1/2 Model for CsCuCl_3 in an External Magnetic Field

    Full text link
    CsCuCl_3 is a ferromagnetically stacked triangular spin-1/2 antiferromagnet. We discuss models for its zero-temperature magnetization process. The models range from three antiferromagnetically coupled ferromagnetic chains to the full three-dimensional situation. The situation with spin-1/2 is treated by expansions around the Ising limit and exact diagonalization. Further, weak-coupling perturbation theory is used mainly for three coupled chains which are also investigated numerically using the density-matrix renormalization group technique. We find that already the three-chain model gives rise to the plateau-like feature at one third of the saturation magnetization which is observed in magnetization experiments on CsCuCl_3 for a magnetic field perpendicular to the crystal axis. For a magnetic field parallel to the crystal axis, a jump is observed in the experimental magnetization curve in the region of again about one third of the saturation magnetization. In contrast to earlier spinwave computations, we do not find any evidence for such a jump with the model in the appropriate parameter region.Comment: 13 pages LaTeX2e with EPJ macro package (included), 8 (e)ps figures included using psfig.sty; this is the final version to appear in Eur. Phys. J B; a few further explanations and one reference adde

    Application of Microcanonical Temperature to the Spin Crossover of Fe-co Compounds

    Full text link
    Using the Rugh's microcanonical approach to temperature we study the classical model of three dimensional spin-crossover of Fe-Co compounds. These compounds are characterized by magnetic ions that can be in a high-spin or low-spin state. We consider the case of diamagnetic low-spin state. The values of the magnetization average, and fraction of high-spin/low-spin are studied over a wide range of values for the system size, temperature, magnetic field, energy difference, nearest neighbor coupling and exchange interaction. We also address the metastability according to the relative values of interaction parameters and the phase diagram of the model. Keywords: phase transition, dynamical temperature, spin crossove

    Quantum shock waves in the Heisenberg XY model

    Full text link
    We show the existence of quantum states of the Heisenberg XY chain which closely follow the motion of the corresponding semi-classical ones, and whose evolution resemble the propagation of a shock wave in a fluid. These states are exact solutions of the Schroedinger equation of the XY model and their classical counterpart are simply domain walls or soliton-like solutions.Comment: 15 pages,6 figure

    Dynamical Effective Medium Theory for Quantum Spins and Multipoles

    Full text link
    A dynamical effective medium theory is presented for quantum spins and higher multipoles such as quadrupole moments. The theory is a generalization of the spherical model approximation for the Ising model, and is accurate up to O(1/z_n) where z_n is the number of interacting neighbors. The polarization function is optimized under the condition that it be diagonal in site indices. With use of auxiliary fields and path integrals, the theory is flexibly applied to quantum spins and higher multipoles with many interacting neighbors. A Kondo-type screening of each spin is proposed for systems with extreme quantum fluctuations but without conduction electrons.Comment: 16 pages, 3 Postscript figure

    Tunneling into a two-dimensional electron system in a strong magnetic field

    Full text link
    We investigate the properties of the one-electron Green's function in an interacting two-dimensional electron system in a strong magnetic field, which describes an electron tunneling into such a system. From finite-size diagonalization, we find that its spectral weight is suppressed near zero energy, reaches a maximum at an energy of about 0.2e2/ϵlc0.2e^{2}/\epsilon l_{c}, and decays exponentially at higher energies. We propose a theoretical model to account for the low-energy behavior. For the case of Coulomb interactions between the electrons, at even-denominator filling factors such as ν=1/2\nu=1/2, we predict that the spectral weight varies as eω0/ωe^{-\omega_0/|\omega|}, for ω0\omega\rightarrow 0

    Fermi and non-Fermi liquid behavior in quantum impurity systems: Conserving slave boson theory

    Full text link
    The question of Fermi liquid vs. non-Fermi liquid behavior induced by strong correlations is one of the prominent problems in metallic local moment systems. As standard models for such systems, the SU(N)xSU(M) Anderson impurity models exhibit both Fermi liquid and non-Fermi liquid behavior, depending on their symmetry. Taking the Anderson model as an example, these lectures first give an introduction to the auxiliary boson method to describe correlated systems governed by a strong, short-range electronic repulsion. It is then shown how to include the relevant low-lying excitations (coherent spin flip and charge fluctuation processes), while preserving the local gauge symmetry of the model. This amounts to a conserving T-matrix approximation (CTMA). We prove a cancellation theorem showing that the CTMA incorporates all leading and subleading infrared singularities at any given order in a self-consistent loop expansion of the free energy. As a result, the CTMA recovers the correct infrared behavior of the auxiliary particle propagators, indicating that it correctly describes both the Fermi and the non-Fermi regimes of the Anderson model.Comment: 37 pages, LaTeX, style file included, 10 postscript figures; to appear in Proceedings of the XXXVIII Cracow School of Theoretical Physics, Zakopane, Poland, June 1-10, 199

    Solution of the X-ray edge problem for 2D electrons in a magnetic field

    Full text link
    The absorption and emission spectra of transitions between a localized level and a two-dimensional electron gas, subjected to a weak magnetic field, are calculated analytically. Adopting the Landau level bosonization technique developed in previous papers, we find an exact expression for the relative intensities of spectral lines. Their envelope function, governed by the interaction between the electron gas and the core hole, is reminescent of the famous Fermi edge singularity, which is recovered in the limit of a vanishing magnetic field.Comment: 4 pages, 1 figur
    corecore