923 research outputs found

    Splitting probabilities as a test of reaction coordinate choice in single-molecule experiments

    Full text link
    To explain the observed dynamics in equilibrium single-molecule measurements of biomolecules, the experimental observable is often chosen as a putative reaction coordinate along which kinetic behavior is presumed to be governed by diffusive dynamics. Here, we invoke the splitting probability as a test of the suitability of such a proposed reaction coordinate. Comparison of the observed splitting probability with that computed from the kinetic model provides a simple test to reject poor reaction coordinates. We demonstrate this test for a force spectroscopy measurement of a DNA hairpin

    The Coupled Cluster Method in Hamiltonian Lattice Field Theory: SU(2) Glueballs

    Get PDF
    The glueball spectrum within the Hamiltonian formulation of lattice gauge theory (without fermions) is calculated for the gauge group SU(2) and for two spatial dimensions. The Hilbert space of gauge-invariant functions of the gauge field is generated by its parallel-transporters on closed paths along the links of the spatial lattice. The coupled cluster method is used to determine the spectrum of the Kogut-Susskind Hamiltonian in a truncated basis. The quality of the description is studied by computing results from various truncations, lattice regularisations and with an improved Hamiltonian. We find consistency for the mass ratio predictions within a scaling region where we obtain good agreement with standard lattice Monte Carlo results.Comment: 13 pages, 7 figure

    Homogenization Approach to Smoothed Molecular Dynamics

    Get PDF
    In classical Molecular Dynamics a molecular system is modelled by classi-cal Hamiltonian equations of motion. The potential part of the correspond-ing energy function of the system includes contributions of several types of atomic interaction. Among these, some interactions represent the bond structure of the molecule. Particularly these interactions lead to extremely stiff potentials which force the solution of the equations of motion to oscil late on a very small time scale. There is a strong need for eliminating the smallest time scales because they are a severe restriction for numerical long-term simulations of macromolecules. This leads to the idea of just freezing the high frequency degrees of freedom (bond stretching and bond angles) via increasing the stiffness of the strong part of the potential to infinity However, the naive way of doing this via holonomic constraints mistakenly ignores the energy contribution of the fast oscillations. The paper presents a mathematically rigorous discussion of the limit situation of infinite stiffnes

    Verified and potential pathogens of predatory mites (Acari: Phytoseiidae)

    Get PDF
    Several species of phytoseiid mites (Acari: Phytoseiidae), including species of the genera Amblyseius, Galendromus, Metaseiulus, Neoseiulus, Phytoseiulus and Typhlodromus, are currently reared for biological control of various crop pests and/or as model organisms for the study of predator¿prey interactions. Pathogen-free phytoseiid mites are important to obtain high efficacy in biological pest control and to get reliable data in mite research, as pathogens may affect the performance of their host or alter their reproduction and behaviour. Potential and verified pathogens have been reported for phytoseiid mites during the past 25 years. The present review provides an overview, including potential pathogens with unknown host effects (17 reports), endosymbiotic Wolbachia (seven reports), other bacteria (including Cardinium and Spiroplasma) (four reports), cases of unidentified diseases (three reports) and cases of verified pathogens (six reports). From the latter group four reports refer to Microsporidia, one to a fungus and one to a bacterium. Only five entities have been studied in detail, including Wolbachia infecting seven predatory mite species, other endosymbiotic bacteria infecting Metaseiulus (Galendromus, Typhlodromus) occidentalis (Nesbitt), the bacterium Acaricomes phytoseiuli infecting Phytoseiulus persimilis Athias-Henriot, the microsporidium Microsporidium phytoseiuli infecting P. persimilis and the microsporidium Oligosproridium occidentalis infecting M. occidentalis. In four cases (Wolbachia, A. phytoseiuli, M. phytoseiuli and O. occidentalis) an infection may be connected with fitness costs of the host. Moreover, infection is not always readily visible as no obvious gross symptoms are present. Monitoring of these entities on a routine and continuous basis should therefore get more attention, especially in commercial mass-production. Special attention should be paid to field-collected mites before introduction into the laboratory or mass rearing, and to mites that are exchanged among rearing facilities. However, at present general pathogen monitoring is not yet practical as effects of many entities are unknown. More research effort is needed concerning verified and potential pathogens of commercially reared arthropods and those used as model organisms in research

    Cancer Precision Medicine: Why More Is More and DNA Is Not Enough

    Get PDF
    Every tumour is different. They arise in patients with different genomes, from cells with different epigenetic modifications, and by random processes affecting the genome and/or epigenome of a somatic cell, allowing it to escape the usual controls on its growth. Tumours and patients therefore often respond very differently to the drugs they receive. Cancer precision medicine aims to characterise the tumour (and often also the patient) to be able to predict, with high accuracy, its response to different treatments, with options ranging from the selective characterisation of a few genomic variants considered particularly important to predict the response of the tumour to specific drugs, to deep genome analysis of both tumour and patient, combined with deep transcriptome analysis of the tumour. Here, we compare the expected results of carrying out such analyses at different levels, from different size panels to a comprehensive analysis incorporating both patient and tumour at the DNA and RNA levels. In doing so, we illustrate the additional power gained by this unusually deep analysis strategy, a potential basis for a future precision medicine first strategy in cancer drug therapy. However, this is only a step along the way of increasingly detailed molecular characterisation, which in our view will, in the future, introduce additional molecular characterisation techniques, including systematic analysis of proteins and protein modification states and different types of metabolites in the tumour, systematic analysis of circulating tumour cells and nucleic acids, the use of spatially resolved analysis techniques to address the problem of tumour heterogeneity as well as the deep analyses of the immune system of the patient to, e.g., predict the response of the patient to different types of immunotherapy. Such analyses will generate data sets of even greater complexity, requiring mechanistic modelling approaches to capture enough of the complex situation in the real patient to be able to accurately predict his/her responses to all available therapies

    Effective dynamics using conditional expectations

    Full text link
    The question of coarse-graining is ubiquitous in molecular dynamics. In this article, we are interested in deriving effective properties for the dynamics of a coarse-grained variable ξ(x)\xi(x), where xx describes the configuration of the system in a high-dimensional space Rn\R^n, and ξ\xi is a smooth function with value in R\R (typically a reaction coordinate). It is well known that, given a Boltzmann-Gibbs distribution on x∈Rnx \in \R^n, the equilibrium properties on ξ(x)\xi(x) are completely determined by the free energy. On the other hand, the question of the effective dynamics on ξ(x)\xi(x) is much more difficult to address. Starting from an overdamped Langevin equation on x∈Rnx \in \R^n, we propose an effective dynamics for ξ(x)∈R\xi(x) \in \R using conditional expectations. Using entropy methods, we give sufficient conditions for the time marginals of the effective dynamics to be close to the original ones. We check numerically on some toy examples that these sufficient conditions yield an effective dynamics which accurately reproduces the residence times in the potential energy wells. We also discuss the accuracy of the effective dynamics in a pathwise sense, and the relevance of the free energy to build a coarse-grained dynamics
    • …
    corecore