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1. INTRODUCTION 

In classical molecular dynamics (MD) simulations the evolution of a molecular system in time 
is described via classical Hamiltonian equations of motion in which the unknowns are the positions 
qi E a 3 and momenta pi E R 3 of all atoms in the system. The interatomic forces are given by an 
empirically constructed interaction potential V so that the motion is governed by the Hamiltonian 

H ( q , p )  = ~ p T M - l p  + 12(q), (1.1) 

where M is the diagonal mass matrix corresponding to the atomic masses. Typically, the potential 
can be split into two parts of essentially different stiffness. In order to indicate this separation we 
rewrite the potential as the sum 

1 
V(q) = V(q)  + j U(q), 

where U represents the stiff parts and V the collection of all soft contributions. The number e > 0 
is small (e << 1) and 1/e gives the ratio of the different time scales of the motion (i.e., the spectral 
norms of the Hessian matrices of U and V are comparably to each other). Thus, the stiff part U/e 2 
of the potential forces the solution of the equations of motion to oscillate on a very small time scale 
of order (.9(@ We are concerned with the following Hamiltonian equations of motion: 

1 gradU(q) = 0, (1.2) (1 = M - l P  ~ M i  i + gradV(q) + ~5 
15 = - g r a d V  - e -2 gradU 

in which gradient is taken with respect to q C R 3d. There is a strong need for eliminating the 
smallest time scales because they are a severe restriction for numerical long-term simulations of 
macromolecules. This leads to the idea of just  freezing the high frequency degrees of freedom, i.e., 
constraining the system to the manifold of equilibrium positions of the stiff potential U while the 
motion is given by the tangential derivative of the soft potential V only. However, this naive approach 
via holonomic constraints is observed to produce incorrect results. 

This article presents a mathematically rigorous discussion of the limit situation in which the 
stiffness of the stiff part of the potential is increased to infinity, i.e., of the limit e --+ 0. It is 
demonstrated that the average of the l imit  solution indeed obeys a constrained Hamil tonian sys tem 
where the constraints are given by the equilibrium positions of U but  with a corrected soft potential. 
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An explicit formula for the additive potential correction is given. This formula is based on two 
theorems which we will quote fl'om the review [1]. While Theorem 3.2 can only be found in [1], the 
first proofs of Theorem 4.1 were given in an early paper by Rubin and Ungar [2], also by Takens 
[3]. In [1] these proofs are simplified via their unification in the context of weak convergences - -  an 
approach which we will exploit for the problems occuring in MD. 

Unfortunately~ the theory is valid only as long as the system does not run into certain resonances 
of the fast motions. Behind those resonances, there is no unique limit solution but a kind of choatic 
scenario for which the notion "Takens chaos" was coined. For demonstrating the relevance of this 
observation for MD, the theory is applied to a realistic, but still simple system: a single butan 
molecule. The appearance of "Takens chaos" in smoothed MD is illustrated and the consequences 
are discussed. 

2. PRELIMINARIES 

In a numerical solution of (1.2) we do not want to compute all the "unessential" oscillatory 
details on scale O(e). But if we want to get the physically relevant dynamical behavior of the 
considered system, we cannot simply ignore the fast degrees of freedom. The idea of smoothed M D  
is to compute the "running average" of the exact solution q of (1.2) only. In the simplest case we 
have q(t) = q°(t) + as in(27r t /T)  with q0 oscillating on scale (9(1) and 7- = O(e). Its running average 
is defined by 

t+r/2 
1 cT(t) = ~  f q(s)ds = q°(t) ,  (2.1) 

o 

t-T~2 

which is not any longer affected by the small time scale T. Thus, a direct numerical computation of 
0 would allow larger timesteps and, in turn, larger maximal time spans for MD-sinmlations. 

In order to deduce an equation directly for the average, we look at the l imit  solution qO of the 
sohltions q~ of (1.2) for e -+ 0. Figure 1 shows some solutions of an example system of form (1.2) 
for different small e. We observe that for decreasing e the fast oscillation get faster and faster 
but the running average remains "invariant". Thus, the limit solution for e --+ 0 may give us a 
good approximation of the running average. Hence, the question is posed whether one can derive a 
differential equation governing this limit solution q0. 

In order to give an answer to this question we have to introduce a suitable concept of convergence 
because another inspection of Figure 1 shows that the velocities 0 ~ do not converge strongly although 
their "running average converges". The suitable type of convergence appears to be the weak*- 
convergence in L°~[0, T]: We have z ~ *" :c ° for a sequence (z e) of functions, if and only if the 
averages 

J --, J P 

dt 

converge for all q5 C L I. An even "weaker" notion of weak convergence is given, if we restrict these 
test functions q5 to the space of infinitely continuous functions with compact support, which gives us 

the notion of weak convergence in the space of distributions 7Y, z ~ z~' x0" 
The link to averaging, which makes weak*-convergence a suitable concept herein, may be illus- 

trated for the easiest situation, i.e., for sequences of harmonic oscillations: 

• In the case of constant amplitude with period e, i.e., x~(t) = z°(t) + a sin(t/~) we have z ~ ~ z ° 
(Riemann-Lebesgue-Lemma) but no strong convergence. 

• If the amplitude a is of order (9(e) also, e.g., z~(t) = x°( t )  + e s in( t /e ) ,  we get strong conver- 
gence x e --~ x °. 
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F u r t h e r m o r e ,  it is easy to u n d e r s t a n d  the  cen t ra l  p r o b l e m  of averaging:  T h e  s t rong  (pointwise)  
convergence  x ~ --+ x ° of func t ions  impl ies  the  s t rong  convergence  f ( x  ~) --+ f (x° ) ,  where  f is a 
f imc t ion  con t inuous  in the  po in t  a r g u m e n t  x. However,  x ~ _X x 0 does not imply  f ( x  ~) ~ f (x°) .  For 
example ,  we get sin~(t/e) ~ 1/2  ¢ 0. T h i s  fact  - -  con t inuous  func t ions  do no t  in  genera l  c o n s t i t u t e  
weak*-con t inuous  o p e r a t o r s  - -  a p p e a r s  to  be  t he  r eason  for t he  necess i ty  of the  p o t e n t i a l  cor rec t ion  
W m e n t i o n e d  above.  
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Figure  1: Illustration of the convergence with e --+ 0 for the system (3.1) in the two-dimensional collinear case 
with V(q) = q4 and U(q) = (q~ - qx)2/2: on the left hand side the first component q~ of the solution versus 
time for e decreasing from top to bot tom (e = 1/30, 1/50, 1/120), on the right hand side the corresponding 
derivatives q~ in the corresponding order. The total energy is identical in all three cases. Note tha t  q[ converges 
strongly to its running average while 0~ converges only weakly. 

3. LIMIT EQUATION FOR BOUNDED ENERGY 

Let  us now swi tch  back to the  de r iva t i on  of the  di f ferent ia l  e q u a t i o n  govern ing  th is  l imi t  so lu t ion  

q0. To th i s  end,  we rewr i te  the  e q u a t i o n  of m o t i o n  as the  second order  e q u a t i o n  

1 
~ + F(q')  + -~G(q ' )  = 0, (3.1) 

w i th  forces F(q) = M -1 grad  V(q) a n d  G(q) = M -1 g rad  U(q). For the  sake of n o t a t i o n a l  s impl ic i ty  

we set M = I t h r o u g h o u t ,  which  co r r e sponds  to a s imple  redef in i t ion  of  the  p o t e n t i a l s  V and  U. 
Now, for a n  un ique  d e t e r m i n a t i o n  of the  sequence  of so lu t ions  qe we need  the  in i t ia l  values  

q~(O) = q~ and 0~(o) = 0~, 
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which, moreover, determine the sequence of total energies corresponding to q': 

1 1 Ee = ~ I~)~[ 2 + V(q~) + ~ U(q~). 

For the case that E e is a constant sequence, Figure 1 demonstrates that the momenta 0 ~ converge 
only weakly, because they oscillate with constant amplitude but  period O(e) around their running 
average. This observation can be generalized as the following lemma states: 

LEMMA 3.1 Let the sequence (E e) of total energies be bounded, i.e., there is a bound C > 0 such 
that IEEI < C for all e > 0, then the following three assertions hold (up to a possible extraction of 
subsequences) : 

1. qE converges strongly in C° : qe _+ qO. 

2. 0 c converges weakly in L°~: q~ *" (lo. 

3. ~ = O(e -1) converges in the sense of distributions: Oe ~ 3o. 

A proof for this statement may be found in [1]. Therein, one can also find an example which 
shows that for unbounded (E ~) even qC does in general not converge strongly but only weakly. 

For the following we remain with the case of bounded energy. We also restrict ore-selves to 
potentials U which are strictly convex in directions orthogonal to the manifold J~4 of its equilibrium 
positions with U I ~  = 0 and grad U I ~  = 0. This is the typical case for the stiff bond potentials in 
MD. 

By multiplying (3.1) with e 2 and using the convergences from Lemma 3.1 we directly get that 
G(q °) = 0, i.e., that q0 indeed lives on the constraints manifold 

3,t = {q: G(q) = gradU(q) = 0}, 

i.e., it is fixed to the equilibrium positions of the stiff potential U. 
Now, the following notation will be useful: The orthogonal projection of a position q on 31/ will 

be denoted with qM. Each position q in a sufficiently small neighborhood of 2¢I can uniquely be 
written as the sum of its projection and the distance vector qN normal to the manifold: q = qM + qN. 
We may assume that q~ is in such a neighborhood, because its distance to M is of order C0(e). 

We are interested in an equation for the motion of q0 on M.  Therefore, let us now investigate 
the consequences of the different types of convergence in (3.1) directly: 

1 ii c + g(q  C) + ~ G ( q  C) = O. (3.2) 

~4o -~F(q °) ~, 
~ 7 9  ~- l i ra  G(q ~ )/e 2 

e--*0 

In order to compute the desired 79'-limit of G(qe)/e 2 one can use Taylor expansion of G(q ~) around 
the projection q~  of q~ on ~d. A careful treatment of the different convergences (strong, weak*, 
weak in 7? ~ ) in this expansion leads to the following theorem, which is proved in our paper [1]. 

THEOREM 3.2 For the case of bounded energy the limit average qO fulfills 

1 D2G(qO) : E = 0 {1 ° + F(q °) + grad G(q°) T .  A + 
(3.3) 

a ( q  °) = 0, 

where ~]c/e ~' A and r] C ® rf 2~ E with the quantity 77 ~ = (qe _ q ~ ) / e  _X O. D 2 denotes the second 

derivative with respect to q. 
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EN(q,q) = fflONI 

=TN 

Since q~ = O(e), the tota l  energy splits as 
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In  this result,  only the correction term D2G : E / 2  is surprising.  If it is not  there, equat ion 
(3.3) describes a system in which the fast degrees of freedom normal  to A4 are frozen and the fast 
oscillations on scale O(~) are loosing any impact  on the mot ion  in the l imit  e -+ 0. But  in general, 
this is not  the ease. Al though we have ~e ~* 0 it is E # 0 in general  because squar ing a f lmction is 
not a weak*-eontinuous opera t ion as we have already observed above. Unfor tunate ly ,  I and  E are 
not directly known and  it may be that  D2G : E vanishes in certain cases, e.g., if G is l inear or gives 
only a correction of the Lagrange parameter  I (of. below). 

In  order to compute  the correction D2G : E we have to const ruct  an  explicit formula for E. This  
is done in the next  section. 

4. AN EXPLICIT FORMULA FOR THE CORRECTING POTENTIAL 

We will now see tha t  we can compute  E from the total  energy of the fast oscillations normal 
to 2VI. At first, let us restrict  the discussion to the case in which .M is of codimension one. In a 
ne ighborhood of q~1 the stiff potent ia l  U is harmonic  with "spring constant"  

w2(q) = D~,U(q), q S M ,  (4.1) 

where DN denotes the derivat ion normal  to M. D~U is a positive scalar value because 3.4 is of 
codimension 1 and  U is assumed to be strictly convex in normal  direct ion to 34.  Thus ,  w is a positive 
scalar funct ion on 3,4. Since q~ - q~4 = O(~), one intui t ively assumes that  the normal  oscillation of 
q~ is nearly harmonic  with this frequency w(q~). 

Thus,  the normal energy corresponding to a state (q,O) may be defined as 

+lw2(qM(t)) q~. (4.2) 
4" 

= ~ s  

Hence, in the l imit  we have 

m = ~1¢12 + V(qh) + E~ + o(~). 
1 E 0 = ~10°1 ~ + V ( q ~ )  + E o 

i.e., the l im i t  E ° of the normal energy occurs as a correction of the soft potent ial  V in the l imi t  of 
the tota l  energy. In order to construct an expl ic i t  l im i t  equation we st i l l  have to find two missing 
links: 

1. We need the relat ion of E ° to the correction terra D2G : E, i.e., to the normal  par t  ENN of 
E. Because of the s t rong convergence q ~  --+ q0 we easily compute  

1 1 w~ U~v = ~ w 2 (q~M(t)) (q~v) 2 *_5. ~ (q0) ENg .  (4.3) 

Moreover, It  tu rns  out that ,  in the l imit  e -+ 0, E ° is equipartioned into its kinetic and  its 
potent ia l  part ,  i.e., T ° = U ° = E°N/2 (cf. [1] for details). This  equipar t i t ion  is a well known 
fact for the time averages of these energy par ts  for harmonic  oscillations and  is connected to 
the so called Virial Theorem of Stat is t ical  Mechanics, a mathematical result  which has the 
appearance  of an  ergodic theorem, b u t  no ergodieity is assumed,  cf. [4]. Together with (4.3), 
the equipar t i t ion  gives the desired equat ion:  

g O = Co2(q 0) ZNN, (4.4) 
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2. We also need a formula for E ° allowing an explicit  computa t ion  of its value as a funct ion of 
q0 E .A//. This  formula is given by the observat ion that  E ° / w ( q  °) is an adiabatic invariant in 
the l imit  e --+ 0. A proof for this s ta tement  can again be found in [1]. It  results from inser t ing 
the abs t rac t  l imit  equat ion (3.3) from Theroem 3.2 in the expression for the first t ime derivative 
of E ° and  using (4.4). N 

Conclusively, we find (eft I1], Theorem 4.4): 

THEOREM 4.1 The sequence EeN = EN(q~,0 e) converqes, strongly, E eN -+ EN° The magnitude 
E° , /w(q  °) is an adiabat ic  invariant  of the motion in the limit e --~ 0, i.e., it ezists a constant 
(3 E R such that 

O (4.5) E°N = Oco(q°), ENN -- w(qO ). 

This constant 0 can uniquely be determined via the initial positions qO = lime_,o q~ of the limit 
average qO in t = O, 

0 = E°N(O)/co(q°). (4.6) 

The limit average qO obeys the following const ra ined Hami l ton ian  system 

~o + grad(V + W ) ( q  °) + D2U(q °) . A = 0 
(4.7) 

g r adU(q  °) = O, 

in which the correcting potential W is given by the limit of the normal energy 

W(q)  = Oa2(q) 

for q E 3/l. 

Now we can directly see in which cases the correction will vanish: The ini t ia l  condit ions may lead 
to a cons tant  (3 = 0 (vanishing normal  energy),  or w may be cons tant  on M (constant  gully width).  
The  first case is given if E ~ O(e 2) and E 0, cf. [5]. N -~ 0. It  can be shown that  then we have qSv = = 
The  second case is the case of the so called Arnold- theorem [6][7] with 

O~ = const. rU .~ 

Using the general  result  of Theorem 3.2, we have shown in [1] tha t  the correction does not  cont r ibute  
in precisely these two cases - -  independently of the codimension of M .  

Typical  MD applicat ions do not  belong to one of these cases, i.e., we have to expect a nonvanish ing  
correcting potent ial .  It was mis takenly argued in the l i terature  [8] tha t  the potent ia l  correction is 
given by the wel l -known FIXMAN-potential.  An i l lustrative test example for the correcting potent ia l  
W effected by stiff bond  angle potent ia ls  and  tile comparison with the FIXMAN-potential  can be 
found in [9]. 

5. APPLICATION TO MOLECULAR DYNAMICS 

Let us now switch to the general  case in which M is of codimension r > 1. We restrict  ourselves 
to a short  review of the results of TAKENS. He calls the Hessian mat r ix  D ~ U  of the stiff potent ia l  
in the normal  directions of .M diagonizable , if there is a field ( e l , . . . ,  e~)  of o r thonormal  bases of 
Ni t4 ,  which are eigenvectors of D2N U, i.e., 

D 2 U ( q ) :  (eiN(q) ® eJN(q)) = co2(q) . 5,j Vq C .~vt. (5.1) 
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Here, the eigenfrequencies wi shall depend smoothly on q E f14. TAKENS proves ([3, Theorem 1]) 
that  the adiabat ic  invariance of the ratio of normal energy and frequency holds for each normal 
component, if one can exclude certain resonances, i.e., if for x C A4 we always have 

coi(x) # coj(x) 1 < i , j  < r, i # j, (5.2) 

and 
~ ( x )  # ~¢(x)  + ~ok(z), l<i , j , k<r .  

Using this result,  we can extend Theorem 4.1 to these "no-resonance" cases. 
But WAKENS [3, Theorem 3] also constructed an example with r = 2, where a one-parameter 

family of initial da ta  q~(0; #), qe(0; #), depending on # C [0, 1] but  with p independent @~, yields an 
one-parameter  family of limit solutions q°(t; #) having the following property:  There is a t ime t ,  > 0 
at which the no resonance conditions are hurt for the first time. For 0 <: t < t ,  the solutions 

q°(t ;#)  = q°(t) 

do not depend on the parameter  #, as Theorem 4.1 states. But for fixed t > t .  the values of q°(t; p), 
# G [0, 1], consti tute a continuum. Thus, for t ime spans larger than t .  and for a fixed parameter  # 
we cannot describe the limit q0 by a uniquely solvable initial value problem. KOILLER [10] coined 
the notion "Takens-chaos" for this effect. 

In general, this effect will occur in smoothed MD as can be i l lustrated in one of the most simple 
realistic examples, the lumped butan molecule. The model for the butan molecule (CH3CH2CH2CH3) 
consists of four mass points (the four "units" CHk, k = 2, 3) with the corresponding positions qi C R 3 
and momenta  Pi E R a, i = 1 , . . . ,  4. Thus, the state space has dimension 24 and the position and 
momenta states are 

q = (q l , . . . , q4 )  E R 12 and P = (P l , . . . , P4 )  E R 12. 

The stiff part  of the interaction potent ial  "t) is given by bond stretching and bond angle contributions 

3 

V(q)/e  2 = ~ Ust(qk,qk+I) + Uan(ql,q2,q3) + Uan(q2,q3,q4) 
k = l  

Therein, the three bonds are modelled as 3d-springs with forces only depending on the deviation 
from the equilibrium length 

t~ 
U~,(~, y) = 7 (Ix - yl - r0) 2 , 

while the bond-angle  interactions are "quasi-harmonically" given by the angle ¢(x, y, z) between the 
two bonds connecting x with y, and y with z: 

Uan(X,y,z) = ~ ( c o s ¢ ( z , y , z )  - cos¢0) 2 with c o s ¢ ( x , y , z )  = 
I~  - y l  I~ - y l  

The soft par t  V of V is the so-called torsion angle potential 

W (q) = Vtor(q) --- Vtor(tg(q) ). 

The torsion angle 0 = 0(q) is the angle between the two 2d planes which are spanned by ql, q2, q3 
and q2, q3, q4, respectively. The torsion angle potential  Vtor has more than one equilibrium angle but 
three local minima (cf. Figure 2). Herein, the coefficients a = 83.7 kcal / (mol  A 2) and ~ = 43.1 
kcal /mol  and the potent ial  Vtor are taken from [11]. The mass matr ix  M is given by the masses of 
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Figure  2: Dashed line: Torsion angle potential I'~or versus torsion angle 0. Note that the potential is symmetric 
with respect to the main minimum located at 0 = 7r with two equal local minima near 0 = 7r/3, 5~r/3. Solid 
lines: Frequencies wi of the fast oscillations normal to ~ versus the torsion angle 0. Note the crossings of the 
two lowest frequencies near the local minima of Vtor. They are connected to resonances of the fast oscillations. 

CH3 (mr -- m4 = 15#) and CH2 (m2 = m3 = 14#), where # is the a tomic  mass uni t  # = 1.67• 10 -27 
kg. 

Note,  tha t  the stiff po ten t ia l  U can be rewri t ten  as 

1 5 
U(q) = ~l¢(q)l  ~ = E ~bk(q)2 

k = l  

with  "~ = (~1 . . . .  , ~5) where the ~bk denote  the different contr ibut ions  from Ust and U~. scaled wi th  
e 2. Thus,  the manifold 3,'[ of equ i l ib r ium posi t ions of U has eodimension r = 5. Some simple calculus 
shows, tha t  the  condi t ion  (5.1) for comput ing  the frequencies wi of the fast normal  oscil lat ions results 
in the eigenvalue problem for the 5 x 5 Gram matrix G: 

g r a d e  T M  - 1 g r a d e  A = w 2A, 

JG 

where grad ~)T denotes the 5 x 12 Jacob ian  ma t r ix  of ¢ .  The  corresponding eigenvectors  ,~ of G allow 

the evaluat ions  of the constants  Gi for the correct ing potent ia l  

5 

i=1 

A direct  evaluat ion  of G shows tha t  it depends  on q only via the  tors ion angle 0: G(q) = G(O(q)). 
Thus,  the frequencies wi may be given as funct ions of 0 which is done in F igure  2. We observe tha t  
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TAKENS' "no-resonance" condition (5.2) is hurt for two values of the torsion angle. Thus, for certain 
initial conditions, i.e., in general, this butan  model will develop TAKENS-chaos. In particular cases, 
i.e., for initial data for which the constants (~i for the two lower frequencies wl and w2 are zero, there 
is no TAKENS-chaos and our Theorem 4.1 governs the limit solution. 

For one of these cases ((Di = 0 for all i ~ 4) the corresponding correcting potential W is shown in 
Figure 3. Herein, the initial data has been chosen so that only O4 ¢ 0 corresponding to the normal 
energy E,\, = 3.5 kcal/mol which is half of the average kinetic energy of a bu tan  molecule in a gas 
at temperature T = 300K collected in this single degree of freedom. Note, that in this case the 
correcting potential leads to an inversion of the importance of the local minima. 

, 4 . 5  

5 \'-, keal .~. 4I 
2 

, 3 . 5  

3 

2.5 
2 4 0 

• I ! m e 
t .  | x " ,  ~ ~s i |  

I I '  I t  I :  , :  i |  i "  I L  , :  

: f l  

2 t i n p s  3 

Figure 3: Left hand side: Torsion angle potential Vtor (dashed line) and the corrected potential Vtor + W 
for the scenario explained in the text (solid line) in kcal/mol versus the torsion angle 0. In the corrected 
potential the minimum at 0 = 7r is no longer the global minimum. Right hand side: Evolution of the distance 
Iql - q41 with t for the original MD-solution (dashed line) and for the limit solution (solid line) for the scenario 
explained in the text. 

For corresponding initial data the right hand subfigure in Figure 3 illustrates the original and limit 
solutions. Obviously, in this case, the limit solution is a good approximation of the running average of 
the original solution up to the time shown in the figure. For larger times the two solutions increasingly 
deviate from each other. This must be expected because, for values e > 0, the spectral gap between 
fast and slow motions is finite and introduces a direct coupling of both kinds of motion which effects 
the adiabaticity of EN/W to be valid only approzimately. The time steps in a numerical integration 
of the limit solution can be a factor 8 larger than those used for integrating the original solution 
(comparable accuracy). Thus, the corresponding computational effort is smaller, but  unfortunately, 
only by a factor of 2, because of the repeated diagonalizations of the Gram matrix G. 

For initial data with (~)1 • 0 or (~)2 ¢ 0 (resonant cases) the limit solution again is a good 
approximation of the running average but only as long as the system remains inside the potential 
well of the main minimum of Vtor at 0 = 7r. The deviation increases if the system switches to one of 
the local minima of Vtor and significantly before the crossing of wl and w2 is reached. 

6. CONCLUSIVE REMARKS 

We discussed the limit e --4 0 for the Hamiltonian system (1.2) and its usefulness for applications 
to MD. In addition to the construction of the explicit limit equation away from resonance points 
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and the observation that these points can effect a non-uniqueness called TAKENS-chaos, two main 
results were collected: 

1. Even if the limit solution is determined uniquely, it is a good approximation for the running 
average of MD--solutions for a relatively short time span only. This is due to the fact that 
for realistic MD--applications the resulting E is not small enough. For the same reason the 
oscillations on scale O(c) are not fast enough in order to effect a significant gain in efficiency if 
their evaluation is avoided by solving the limit equation. 

2. The observation of TAKENS-ehaos means that in general the homogenization problem is not 
solvable. The present authors assume that the corresponding problem of the resonances of the 
fast degrees of freedom will be the bottleneck for any mathematical approach to the running 
average, even for e > 0, because any "averaging" or "smoothing" technique must skip some 
of the information about the phases of fast motions. But exactly this "phase information" is 
necessary for an accurate description of the resonant scenario. 
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