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1. INTRODUCTION

In classical molecular dynamics (MD) simulations the evolution of a molecular system in time
is described via classical Hamiltonian equations of motion in which the unknowns are the positions
¢; € R? and momenta p; € R? of all atoms in the system. The interatomic forces are given by an
empirically constructed interaction potential V so that the motion is governed by the Hamiltonian

Hlg,p) = % TM™'p + V(g), (1.1)

where M is the diagonal mass matrix corresponding to the atomic masses. Typically, the potential
can be split into two parts of essentially different stiffness. In order to indicate this separation we
rewrite the potential as the sum

Vig) = V(g) + }QU(Q),

where U represents the stiff parts and V' the collection of all soft contributions. The number ¢ > 0
is small (e <« 1) and 1/e gives the ratio of the different time scales of the motion (i.e., the spectral
norms of the Hessian matrices of U and V are comparably to each other). Thus, the stiff part U/e?
of the potential forces the solution of the equations of motion to oscillate on a very small time scale
of order O(e). We are concerned with the following Hamiltonian equations of motion:

g = Mp M 1 _

p = —gradV — 2 gradU = M{§ + gradV{q) + =2 gradU(q) = 0, (1.2
in which gradient is taken with respect to ¢ € R3¢, There is a strong need for eliminating the
smallest time scales because they are a severe restriction for numerical long-term simulations of
macromolecules. This leads to the idea of just freezing the high frequency degrees of freedom, i.e.,
constraining the system to the manifold of equilibrium positions of the stiff potential U while the
motion is given by the tangential derivative of the soft potential V" only. However, this naive approach
via holonomic constraints is observed to produce incorrect results.

This article presents a mathematically rigorous discussion of the limit situation in which the
stiffness of the stiff part of the potential is increased to infinity, i.e., of the limit ¢ — 0. It is
demonstrated that the average of the limit solution indeed obeys a constrained Hamiltonian system
where the constraints are given by the equilibrium positions of U but with a corrected soft potential.
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An explicit formula for the additive potential correction is given. This formula is based on two
theorems which we will quote from the review [1]. While Theorem 3.2 can only be found in [1], the
first proofs of Theorem 4.1 were given in an early paper by Rubin and Ungar [2], also by Takens
(3]. In [1] these proofs are simplified via their unification in the context of weak convergences — an
approach which we will exploit for the problems occuring in MD.

Unfortunately, the theory is valid only as long as the system does not run into certain resonances
of the fast motions. Behind those resonances, there is no unique limit solution but a kind of choatic
scenario for which the notion “Takens chaos” was coined. For demonstrating the relevance of this
observation for MD, the theory is applied to a realistic, but still simple system: a single butan
molecule. The appearance of “Takens chaos” in smoothed MD is illustrated and the consequences
are discussed.

2. PRELIMINARIES

In a numerical solution of (1.2) we do not want to compute all the “unessential” oscillatory
details on scale O(e). But if we want to get the physically relevant dynamical behavior of the
considered system, we cannot simply ignore the fast degrees of freedom. The idea of smoothed MD
is to compute the “running average” of the exact solution ¢ of (1.2) only. In the simplest case we
have q(t) = ¢°(t) + asin(27t/T") with ¢° oscillating on scale @(1) and 7 = @(¢). Its running average
is defined by

T2

a0 = = [ a)ds = 1), (2.1
t~T/2
which is not any longer affected by the small time scale 7. Thus, a direct numerical computation of
g would allow larger timesteps and, in turn, larger maximal time spans for MD-simulations.

In order to deduce an equation directly for the average, we look at the limit solution ¢° of the
solutions ¢¢ of (1.2) for ¢ — 0. Figure 1 shows some solutions of an example system of form (1.2)
for different small e. We observe that for decreasing e the fast oscillation get faster and faster
but the running average remains “invariant”. Thus, the limit solution for € — 0 may give us a
good approximation of the running average. Hence, the question is posed whether one can derive a
differential equation governing this limit solution q°.

In order to give an answer to this question we have to introduce a suitable concept of convergence
because another inspection of Figure 1 shows that the velocities ¢¢ do not converge strongly although
their “running average converges”. The suitable type of convergence appears to be the weak*-
convergence in L%®[0,7]: We have z¢ > z° for a sequence (z¢) of functions, if and only if the
averages

/w‘(t)q’)(t)dt - /zo(t) (1) dt

converge for all ¢ € L'. An even “weaker” notion of weak convergence is given, if we restrict these

test functions ¢ to the space of infinitely continuous functions with compact support, which gives us

. . o D
the notion of weak convergence in the space of distributions D', z€ = z°.

The link to averaging, which makes weak*-convergence a suitable concept herein, may be illus-
trated for the easiest situation, i.e., for sequences of harmonic oscillations:

e In the case of constant amplitude with period €, i.e., z¢(t) = z°(¢) + a sin(t/e) we have z¢ = z°
(Riemann-Lebesgue-Lemma) but no strong convergence.

e If the amplitude a is of order O(e) also, e.g., z°(t) = z(t) + ¢ sin(t/e), we get strong conver-

gence z° — ¥
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Furthermore, it is easy to understand the central problem of averaging: The strong (pointwise)
convergence z° — z° of functions implies the strong convergence f(z¢) — f(z°), where fis a
function continuous in the point argument z. However, z¢ = z° does not imply f(z¢) = f(«%). For
example, we get sin®(t/e) = 1/2 # 0. This fact — continuous functions do not in general constitute
weak*-continuous operators — appears to be the reason for the necessity of the potential correction
W mentioned above.

q q
5 : 100 ! J
; =3 VA
-5 -100 }
0 1 2 3 0 1 2 3
5 100 |
0 =4 0
-5t -100 ;
0 1 2 3 1 2 3
5 100
0 ""T%ﬁ 0
-5 -100
0 1 2 4 3 0 1 2, 3

Figure 1: Illustration of the convergence with ¢ — 0 for the system (3.1) in the two-dimensional collinear case
with V{g) = ¢} and U(q) = (g2 — q1)%/2: on the left hand side the first component gf of the solution versus
time for e decreasing from top to bottom (e = 1/30,1/50,1/120), on the right hand side the corresponding
derivatives ¢f in the corresponding order. The total energy is identical in all three cases. Note that ¢f converges
strongly to its running average while ¢§ converges only weakly.

3. LIMIT EQUATION FOR BOUNDED ENERGY

Let us now switch back to the derivation of the differential equation governing this limit solution
¢°. To this end, we rewrite the equation of motion as the second order equation

. 1

¢ + Fld) + 5 Gl¢°) =0, (3.1)
with forces F(q) = M~!grad V(q) and G(g) = M~ grad U(q). For the sake of notational simplicity
we set M = I throughout, which corresponds to a simple redefinition of the potentials V and U.

Now, for an unique determination of the sequence of solutions ¢ we need the initial values

¢(0) = ¢ and ¢°(0) = g5,
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which, moreover, determiné the sequence of total energies corresponding to ¢¢:
1. 1
B = S + Vi) + 5 UlaH)-

For the case that E€ is a constant sequence, Figure 1 demonstrates that the momenta ¢¢ converge
only weakly, because they oscillate with constant amplitude but period O(e) around their running
average. This observation can be generalized as the following lemma states:

LEMMA 3.1 Let the sequence (E€) of total energies be bounded, i.e., there is a bound C > 0 such
that |E¢| < C for all € > 0, then the following three assertions hold (up to a possible extraction of
subsequences):

1. ¢¢ converges strongly in C°: ¢¢ — ¢°.
2. ¢° converges weakly in L%: ¢¢ > ¢0.

3. §¢ = O(e™1) converges in the sense of distributions: ¢ LA q°.

A proof for this statement may be found in [1]. Therein, one can also find an example which
shows that for unbounded (£} even ¢¢ does in general not converge strongly but only weakly.

For the following we remain with the case of bounded energy. We also restrict ourselves to
potentials U/ which are strictly convex in directions orthogonal to the manifold M of its equilibrium
positions with Ulaq = 0 and grad Ujaq = 0. This is the typical case for the stiff bond potentials in
MD.

By multiplying (3.1) with €2 and using the convergences from Lemma 3.1 we directly get that
G(¢®) =0, i.e., that ¢° indeed lives on the constraints manifold

M = {qg: Glg) =gradU(q) =0},

i.e., it is fixed to the equilibrium positions of the stiff potential U.

Now, the following notation will be useful: The orthogonal projection of a position g on M will
be denoted with ga;. Each position g in a sufficiently small neighborhood of M can uniquely be
written as the sum of its projection and the distance vector gy normal to the manifold: g = gpr +gn.
We may assume that ¢¢ is in such a neighborhood, because its distance to M is of order O(e).

We are interested in an equation for the motion of ¢° on M. Therefore, let us now investigate
the consequences of the different types of convergence in (3.1) directly:

i 3 € 1 €
\q/—i— F(¢*) + E—ZG(q) = 0. (3.2)
2o —FE0

D! .
D lim G(ge)/€?
0

In order to compute the desired D'-limit of G(g)/¢? one can use Taylor expansion of G{g¢) around
the projection ¢§,; of ¢¢ on M. A careful treatment of the different convergences (strong, weak*,
weak in D' ) in this expansion leads to the following theorem, which is proved in our paper [1].

THEOREM 3.2 For the case of bounded energy the limit average q° fulfills
@ + F(¢®) + gradG(g)T - X + 1 D?*G(¢®) :2 = 0

G(qo) = 0 43

where n°[e 2L X and @0t = T with the quantity n° = (¢ — ¢5,)/¢ — 0. D? denotes the second
derivative with respect to q.
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In this result, only the correction term D?G : ¥/2 is surprising. If it is not there, equation
(3.3) describes a system in which the fast degrees of freedom normal to M are frozen and the fast
oscillations on scale O(e) are loosing any impact on the motion in the limit e — 0. But in general,
this is not the case. Although we have 7¢ > 0 it is £ # 0 in general because squaring a function is
not a weak*-continuous operation as we have already observed above. Unfortunately, A and T are
not directly known and it may be that D?G : ¥ vanishes in certain cases, e.g., if G is linear or gives
only a correction of the Lagrange parameter A (cf. below).

In order to compute the correction D2G : T we have to construct an explicit formula for £. This
is done in the next section.

4. AN EXPLICIT FORMULA FOR THE CORRECTING POTENTIAL

We will now see that we can compute I from the total energy of the fast oscillations normal
to M. At first, let us restrict the discussion to the case in which M is of codimension one. In a
neighborhood of g}, the stiff potential U is harmonic with “spring constant”

wq) = DXU(q), qeM, (4.1)

where Dy denotes the derivation normal to M. D%,U is a positive scalar value because M is of
codimension 1 and U is assumed to be strictly convex in normal direction to M. Thus, w is a positive
scalar function on M. Since ¢¢ — ¢§, = Ole), one intuitively assumes that the normal oscillation of
g 1s nearly harmonic with this frequency w(g},)-

Thus, the normal energy corresponding to a state (¢,¢) may be defined as

By(.d) = glan + 5w (am(®) d (42)
=Tn =Un

Since g = Ofe), the total energy splits as
1.
B = i + Vigh) + By + O(0).

Hence, in the limit we have
1.
B = L+ Vi) + B

i.e., the limit E% of the normal energy occurs as a correction of the soft potential V in the limit of
the total energy. In order to construct an explicit limit equation we still have to find two missing
links:

1. We need the relation of E?V to the correction term D2G : %, i.e., to the normal part Lypy of
Y. Because of the strong convergence ¢}, — ¢° we easily compute

Uy = 3o (dhe(0) (a) > 50P(e") D, (4.

Moreover, It turns out that, in the limit ¢ — 0, E?\, is equipartioned into its kinetic and its
potential part, i.e., T8 = U% = E$/2 (cf. (1] for details). This equipartition is a well known
fact for the time averages of these energy parts for harmonic oscillations and is connected to
the so called Virial Theorem of Statistical Mechanics, a mathematical result which has the
appearance of an ergodic theorem, but no ergodicity is assumed, cf. {4]. Together with (4.3),
the equipartition gives the desired equation:

EY = w(¢®) Swn. (4.4)
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2. We also need a formula for E,OV allowing an explicit computation of its value as a function of
¢" € M. This formula is given by the observation that EY, /w(q®) is an adiabatic invariant in
the limit ¢ — 0. A proof for this statement can again be found in [1]. Tt results from inserting
the abstract limit equation (3.3) from Theroem 3.2 in the expression for the first time derivative
of ES and using (4.4).

Conclusively, we find (cf. [1], Theorem 4.4):

THEOREM 4.1 The sequence Efy = En(¢%, %) converges strongly, EY; — Egy. The magnitude
E% /w(q®) is an adiabatic invariant of the motion in the limit ¢ — 0, i.e., it exists a constant
© € R such that o
E} = 0wl(d"), v = — - 4.5)
w(g®) (
This constant © can uniquely be determined via the initial positions q3 = lim_q gy of the limit
average ¢° in t =0,
O = EY(0)/wlqd). (4.6)

The limit average ¢° obeys the following constrained Hamiltonian system
G + grad(V 4+ W)(g®) + D2U(")-x = 0

gradU(¢%) = 0, .7

in which the correcting potential W is given by the limit of the normal energy
W(g) = Owl(q)
for g € M.

Now we can directly see in which cases the correction will vanish: The initial conditions may lead
to a constant @ = 0 (vanishing normal energy), or w may be constant on M (constant gully width).
The first case is given if £5 — 0. It can be shown that then we have ¢§, = O(€?) and £ = 0, cf. [5].
The second case is the case of the so—called Arnold-theorem {6][7] with

DU “ - const.

Using the general result of Theorem 3.2, we have shown in [1] that the correction does not contribute
in precisely these two cases — independently of the codimension of M.

Typical MD-applications do not belong to one of these cases, i.e., we have to expect a nonvanishing
correcting potential. It was mistakenly argued in the literature [8] that the potential correction is
given by the well-known FIXMAN-potential. An illustrative test example for the correcting potential
W effected by stiff bond angle potentials and the comparison with the FIXMAN-potential can be
found in [9].

5. APPLICATION TO MOLECULAR DYNAMICS

Let us now switch to the general case in which M is of codimension » > 1. We restrict ourselves
to a short review of the results of TAKENS. He calls the Hessian matrix D%,U of the stiff potential
in the normal directions of M diagonizable, if there is a field (e}, ..., €% ) of orthonormal bases of
N M, which are eigenvectors of D%,U, ie.,

D3 U(q) : (elv(q) ® ey(q)) =wi(q) - 0;;  VYge M. (5.1)
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Here, the eigenfrequencies w; shall depend smoothly on ¢ € M. TAKENS proves ([3, Theorem 1])
that the adiabatic invariance of the ratio of normal energy and frequency holds for each normal
component, if one can exclude certain resonances, i.e., if for z € M we always have

wi(z) #wilz)  1<4,j < i #7, (5.2)

and
wi(z) # wji(z) + w(x), 1<4,5,k<r

Using this result, we can extend Theorem 4.1 to these “no-resonance” cases.

But TAKENS [3, Theorem 3] also constructed an example with r = 2, where a one-parameter
family of initial data ¢®(0; u}, ¢°(0; ), depending on u € [0, 1] but with u—independent ©;, yields an
one-parameter family of limit solutions ¢°(#; 4) having the following property: There is a time ¢, > 0
at which the no-resonance conditions are hurt for the first time. For 0 < ¢ < ¢, the solutions

() =q°(t)

do not depend on the parameter u, as Theorem 4.1 states. But for fixed ¢ > t. the values of ¢°(¢; u),
u € [0,1], constitute a continuum. Thus, for time spans larger than ¢, and for a fixed parameter y
we cannot describe the limit ¢° by a uniquely solvable initial value problem. KOILLER [10] coined
the notion “Takens-chaos” for this effect.

In general, this effect will occur in smoothed MD as can be illustrated in one of the most simple
realistic examples, the lumped butan molecule. The model for the butan molecule (CH3CH,CH;CHs)
consists of four mass points (the four “units” CHy, k = 2,3) with the corresponding positions ¢; € R?
and momenta p; € R3, i = 1,...,4. Thus, the state space has dimension 24 and the position and
momenta states are

qg=(q,...,q4) €R? and p=(p,...,ps) ER™

The stiff part of the interaction potential V is given by bond stretching and bond angle contributions

3

U@/ = > Ualge, k+1) + Uan(q1,92,93) + Uan(q2, 93, 94)
k=1

Therein, the three bonds are modelled as 3d-springs with forces only depending on the deviation
from the equilibrium length
«
Ust(x7y) - E (|(L‘ - y’ e T0)2 s

while the bond-angle interactions are “quasi-harmonically” given by the angle ¢(z,y, z) between the
two bonds connecting z with y, and y with z:

— o\ (5 —
Unn(z,1,2) = S1c0s (z,0,2) = cosdol?  with  cosayy.z) = (L= EZ N,

The soft part V of V is the so—called torsion angle potential

V(q) = ‘/tor(q) = Vtor(O(Q))'

The torsion angle @ = 8(qg) is the angle between the two 2d-planes which are spanned by ¢;, g2, g3
and go, g3, g4, respectively. The torsion angle potential Vi, has more than one equilibrium angle but
three local minima (cf. Figure 2). Herein, the coefficients o = 83.7 kcal/(mol A?) and 8 = 43.1
kcal/mol and the potential V., are taken from [11]. The mass matrix M is given by the masses of
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Figure 2: Dashed line: Torsion angle potential V;,, versus torsion angle §. Note that the potential is symmetric
with respect to the main minimum located at # = 7 with two equal local minima near 6 = 7/3,57/3. Solid
lines: Frequencies w; of the fast oscillations normal to M versus the torsion angle . Note the crossings of the
two lowest frequencies near the local minima of V;,,. They are connected to resonances of the fast oscillations.

CHj (m1 = my4 = 15p) and CHy (mg = m3 = 14p), where u is the atomic mass unit g = 1.67 - 10-27
kg.
Note, that the stiff potential U can be rewritten as

1

5
Ulg) = §|¢(Q)12 = > ¥lg)’
k=1

with ¢ = (¢1,...,¢5) where the 9, denote the different contributions from Uy, and U, scaled with
€2. Thus, the manifold M of equilibrium positions of U has codimension r = 5. Some simple calculus
shows, that the condition (5.1) for computing the frequencies w; of the fast normal oscillations results
in the eigenvalue problem for the 5 x 5 Gram matriz G:

grad T M lgrady A = w? A,
=G

where grad 7 denotes the 5 x 12 Jacobian matrix of 4. The corresponding eigenvectors A of G allow
the evaluations of the constants ©; for the correcting potential

5
W(g) =Y Oiwilq).
i=1

A direct evaluation of G shows that it depends on g only via the torsion angle 8: G(q) = G(8(q)).
Thus, the frequencies w; may be given as functions of 8 which is done in Figure 2. We observe that
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TAKENS’ “no-resonance” condition (5.2) is hurt for two values of the torsion angle. Thus, for certain
initial conditions, i.e., in general, this butan model will develop TAKENS-chaos. In particular cases,
i.e., for initial data for which the constants ©; for the two lower frequencies wy and ws are zero, there
is no TAKENS—chaos and our Theorem 4.1 governs the limit solution.

For one of these cases (©; = 0 for all ¢ # 4) the corresponding correcting potential W is shown in
Figure 3. Herein, the initial data has been chosen so that only ©4 # 0 corresponding to the normal
energy By = 3.5 kcal/mol which is half of the average kinetic energy of a butan molecule in a gas
at temperature T' = 300K collected in this single degree of freedom. Note, that in this case the
correcting potential leads to an inversion of the importance of the local minima.

4.5

3.5}

25

1 2 tinps 8

Figure 3: Left hand side: Torsion angle potential V;,, (dashed line) and the corrected potential Vi, + W
for the scenario explained in the text (solid line} in kcal/mol versus the torsion angle 8. In the corrected
potential the minimum at 8 = 7 is no longer the global minimum. Right hand side: Evolution of the distance
|gy — q4] with ¢ for the original MD-solution {dashed line) and for the limit solution (solid line) for the scenario
explained in the text.

For corresponding initial data the right hand subfigure in Figure 3 illustrates the original and limit
solutions. Obviously, in this case, the limit solution is a good approximation of the running average of
the original solution up to the time shown in the figure. For larger times the two solutions increasingly
deviate from each other. This must be expected because, for values e > 0, the spectral gap between
fast and slow motions is finite and introduces a direct coupling of both kinds of motion which effects
the adiabaticity of Ey/w to be valid only approzimately. The time steps in a numerical integration
of the limit solution can be a factor 8 larger than those used for integrating the original solution
(comparable accuracy). Thus, the corresponding computational effort is smaller, but unfortunately,
only by a factor of 2, because of the repeated diagonalizations of the Gram matrix G.

For initial data with ©; # 0 or ©3 3 0 (resonant cases) the limit solution again is a good
approximation of the running average but only as long as the system remains inside the potential
well of the main minimum of V;,, at § = w. The deviation increases if the system switches to one of
the local minima of Vi, and significantly before the crossing of w; and w; is reached.

6. CONCLUSIVE REMARKS

We discussed the limit € — 0 for the Hamiltonian system (1.2) and its usefulness for applications
to MD. In addition to the construction of the explicit limit equation away from resonance points
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and the observation that these points can effect a non-uniqueness called TAKENS—chaos, two main
results were collected:

10.

11.

1. Even if the limit solution is determined uniquely, it is a good approximation for the running
average of MD-solutions for a relatively short time span only. This is due to the fact that
for realistic MD~applications the resulting € is not small enough. For the same reason the
oscillations on scale O(e) are not fast enough in order to effect a significant gain in efficiency if
their evaluation is avoided by solving the limit equation.

2. The observation of TAKENS—chaos means that in general the homogenization problem is not

solvable. The present authors assume that the corresponding problem of the resonances of the
fast degrees of freedom will be the bottleneck for any mathematical approach to the running
average, even for € > 0, because any “averaging” or “smoothing” technique must skip some
of the information about the phases of fast motions. But exactly this “phase information” is
necessary for an accurate description of the resonant scenario.
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