43 research outputs found
A Complex Cell Division Machinery Was Present in the Last Common Ancestor of Eukaryotes
Background: The midbody is a transient complex structure containing proteins involved in cytokinesis. Up to now, it has been described only in Metazoa. Other eukaryotes present a variety of structures implied in the last steps of cell division, such as the septum in fungi or the phragmoplast in plants. However, it is unclear whether these structures are homologous (derive from a common ancestral structure) or analogous (have distinct evolutionary origins). Recently, the proteome of the hamster midbody has been characterized and 160 proteins identified. Methodology/Principal Findings: Using phylogenomic approaches, we show here that nearly all of these 160 proteins (95%) are conserved across metazoan lineages. More surprisingly, we show that a large part of the mammalian midbody components (91 proteins) were already present in the last common ancestor of all eukaryotes (LECA) and were most likely involved in the construction of a complex multi-protein assemblage acting in cell division. Conclusions/Significance: Our results indicate that the midbodies of non-mammalian metazoa are likely very similar to the mammalian one and that the ancestor of Metazoa possessed a nearly modern midbody. Moreover, our analyses support the hypothesis that the midbody and the structures involved in cytokinesis in other eukaryotes derive from a large and complex structure present in LECA, likely involved in cytokinesis. This is an additional argument in favour of the idea of a comple
Maternal and paternal genomes differentially affect myofibre characteristics and muscle weights of bovine fetuses at midgestation
Postnatal myofibre characteristics and muscle mass are largely determined during fetal development and may be significantly affected by epigenetic parent-of-origin effects. However, data on such effects in prenatal muscle development that could help understand unexplained variation in postnatal muscle traits are lacking. In a bovine model we studied effects of distinct maternal and paternal genomes, fetal sex, and non-genetic maternal effects on fetal myofibre characteristics and muscle mass. Data from 73 fetuses (Day153, 54% term) of four genetic groups with purebred and reciprocal cross Angus and Brahman genetics were analyzed using general linear models. Parental genomes explained the greatest proportion of variation in myofibre size of Musculus semitendinosus (80–96%) and in absolute and relative weights of M. supraspinatus, M. longissimus dorsi, M. quadriceps femoris and M. semimembranosus (82–89% and 56–93%, respectively). Paternal genome in interaction with maternal genome (P<0.05) explained most genetic variation in cross sectional area (CSA) of fast myotubes (68%), while maternal genome alone explained most genetic variation in CSA of fast myofibres (93%, P<0.01). Furthermore, maternal genome independently (M. semimembranosus, 88%, P<0.0001) or in combination (M. supraspinatus, 82%; M. longissimus dorsi, 93%; M. quadriceps femoris, 86%) with nested maternal weight effect (5–6%, P<0.05), was the predominant source of variation for absolute muscle weights. Effects of paternal genome on muscle mass decreased from thoracic to pelvic limb and accounted for all (M. supraspinatus, 97%, P<0.0001) or most (M. longissimus dorsi, 69%, P<0.0001; M. quadriceps femoris, 54%, P<0.001) genetic variation in relative weights. An interaction between maternal and paternal genomes (P<0.01) and effects of maternal weight (P<0.05) on expression of H19, a master regulator of an imprinted gene network, and negative correlations between H19 expression and fetal muscle mass (P<0.001), suggested imprinted genes and miRNA interference as mechanisms for differential effects of maternal and paternal genomes on fetal muscle.Ruidong Xiang, Mani Ghanipoor-Samami, William H. Johns, Tanja Eindorf, David L. Rutley, Zbigniew A. Kruk, Carolyn J. Fitzsimmons, Dana A. Thomsen, Claire T. Roberts, Brian M. Burns, Gail I. Anderson, Paul L. Greenwood, Stefan Hiendlede
Untersuchungen zur Interaktion viraler Huellbestandteile des Pseudorabies Virus mit Strukturen der infizierten Wirtszelle
Available from TIB Hannover: DW 3584 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
Class XIII myosins from the green alga Acetabularia: driving force in organelle transport and tip growth?
Differential labelling of the vegetative primary nucleus of the marine green alga Acetabularia by lectins, anti-immunoglobulin-antibodies and antinuclear autoimmunosera.
Processing of pseudorabies virus glycoprotein gII
The glycoprotein complex gII of pseudorabies virus was isolated by immunoprecipitation with the monoclonal antibody M5, which was covalently linked to protein A-Sepharose. After sodium dodecyl sulfate-polyarylamide gel electrophoresis under reducing conditions and blotting onto poly(vinylidene difluoride) membrane, its subunits, gIIa, gIIb, and gIIc, were subjected to N-terminal sequencing. gIIa and gIIb start at position 59 and gIIc starts at position 503 according to the amino acid sequence deduced from the gene, indicating that there is one major protein (gIIa) which is cleaved into the two protein fragments gIIb and gIIc. Protein labeling with 14C-amino acids gave no indication that the three proteins (gIIa, gIIb, and gIIc) of the complex are present in equimolar ratios. It seems that gIIa is only a minor component of the complex, whereas gIIb and gIIc are contained in equimolar amounts.</jats:p
