179 research outputs found

    Introgression of wheat DNA markers from A, B and D genomes in early generation progeny of Aegilops cylindrica Host × Triticum aestivum L. hybrids

    Get PDF
    Introgression from allohexaploid wheat (Triticum aestivum L., AABBDD) to allotetraploid jointed goatgrass (Aegilops cylindrica Host, CCDD) can take place in areas where the two species grow in sympatry and hybridize. Wheat and Ae. cylindrica share the D genome, issued from the common diploid ancestor Aegilops tauschii Coss. It has been proposed that the A and B genome of bread wheat are secure places to insert transgenes to avoid their introgression into Ae. cylindrica because during meiosis in pentaploid hybrids, A and B genome chromosomes form univalents and tend to be eliminated whereas recombination takes place only in D genome chromosomes. Wheat random amplified polymorphic DNA (RAPD) fragments, detected in intergeneric hybrids and introgressed to the first backcross generation with Ae. cylindrica as the recurrent parent and having a euploid Ae. cylindrica chromosome number or one supernumerary chromosome, were assigned to wheat chromosomes using Chinese Spring nulli-tetrasomic wheat lines. Introgressed fragments were not limited to the D genome of wheat, but specific fragments of A and B genomes were also present in the BC1. Their presence indicates that DNA from any of the wheat genomes can introgress into Ae. cylindrica. Successfully located RAPD fragments were then converted into highly specific and easy-to-use sequence characterised amplified regions (SCARs) through sequencing and primer design. Subsequently these markers were used to characterise introgression of wheat DNA into a BC1S1 family. Implications for risk assessment of genetically modified wheat are discusse

    EFFECT OF ISOTEOLINE IN ANIMAL MODELS PREDICTIVE OF ANTIDEPRESSANT ACTIVITY

    Get PDF
    Isoteoline, a compound of aporphine structure, was studied for antidepressant activity. Two animal models were used: the behavioral despair test and the clonidine-induced hypothermia. Isoteoline failed to alter the immobility time in rats subjected to forced swimming, but antagonized the immobility-reducing effect of desipramine, both after a single and multiple administration. In rats made hypothermic by i.p. injection of clonidine, Isoteoline did not antagonize the effect on rectal temperature, but rather accentuated it. The conclusion was made that Isoteoline was devoid of antidepressant activity. The results were analyzed in terms of previously demonstrated interactions of Isoteoline with subtypes of serotonergic receptors and were found to provide further evidence in support of these interactions

    DNA damage among wood workers assessed with the comet assay

    Get PDF
    Exposure to wood dust, a human carcinogen, is common in wood-related industries, and millions of workers are occupationally exposed to wood dust worldwide. The comet assay is a rapid, simple, and sensitive method for determining DNA damage. The objective of this study was to investigate the DNA damage associated with occupational exposure to wood dust using the comet assay (peripheral blood samples) among nonsmoking wood workers (n = 31, furniture and construction workers) and controls (n = 19). DNA damage was greater in the group exposed to composite wood products compared to the group exposed to natural woods and controls (P < 0.001). No difference in DNA damage was observed between workers exposed to natural woods and controls (P = 0.13). Duration of exposure and current dust concentrations had no effect on DNA damage. In future studies, workers' exposures should include cumulative dust concentrations and exposures originating from the binders used in composite wood products

    Major Differences in the Diversity of Mycobiomes Associated with Wheat Processing and Domestic Environments: Significant Findings from High-Throughput Sequencing of Fungal Barcode ITS1.

    Get PDF
    Occupational exposure to grain dust is associated with both acute and chronic effects on the airways. However, the aetiology of these effects is not completely understood, mainly due to the complexity and variety of potentially causative agents to which workers are exposed during cereals process. In this study, we characterized the mycobiome during different steps of wheat processing-harvesting, grain unloading and straw handling-and compared it to mycobiomes of domestic environments-rural and urban. To do so, settled dust was collected at a six month interval for six weeks in the close proximity of 142 participants, 74 occupationally exposed to wheat dust-freshly harvested or stored-and 68 not occupationally exposed to it. Fungal community composition was determined in those samples by high-throughput sequencing of the primary fungal barcode marker internal transcribed spacer 1 (ITS1). The comparison of different mycobiomes revealed that fungal richness, as well as their composition, was much higher in the domestic environment than at the workplace. Furthermore, we found that the fungal community composition strongly differed between workplaces where workers handled freshly harvested wheat and those where they handled stored wheat. Indicator species for each exposed population were identified. Our results emphasize the complexity of exposure of grain workers and farmers and open new perspectives in the identification of the etiological factors responsible for the respiratory pathologies induced by wheat dust exposure

    Size and Content of the Sex-Determining Region of the Y Chromosome in Dioecious <i>Mercurialis annua</i>, a Plant with Homomorphic Sex Chromosomes.

    Get PDF
    Dioecious plants vary in whether their sex chromosomes are heteromorphic or homomorphic, but even homomorphic sex chromosomes may show divergence between homologues in the non-recombining, sex-determining region (SDR). Very little is known about the SDR of these species, which might represent particularly early stages of sex-chromosome evolution. Here, we assess the size and content of the SDR of the diploid dioecious herb &lt;i&gt;Mercurialis annua&lt;/i&gt; , a species with homomorphic sex chromosomes and mild Y-chromosome degeneration. We used RNA sequencing (RNAseq) to identify new Y-linked markers for &lt;i&gt;M. annua.&lt;/i&gt; Twelve of 24 transcripts showing male-specific expression in a previous experiment could be amplified by polymerase chain reaction (PCR) only from males, and are thus likely to be Y-linked. Analysis of genome-capture data from multiple populations of &lt;i&gt;M. annua&lt;/i&gt; pointed to an additional six male-limited (and thus Y-linked) sequences. We used these markers to identify and sequence 17 sex-linked bacterial artificial chromosomes (BACs), which form 11 groups of non-overlapping sequences, covering a total sequence length of about 1.5 Mb. Content analysis of this region suggests that it is enriched for repeats, has low gene density, and contains few candidate sex-determining genes. The BACs map to a subset of the sex-linked region of the genetic map, which we estimate to be at least 14.5 Mb. This is substantially larger than estimates for other dioecious plants with homomorphic sex chromosomes, both in absolute terms and relative to their genome sizes. Our data provide a rare, high-resolution view of the homomorphic Y chromosome of a dioecious plant

    Towards comprehensive syntactic and semantic annotations of the clinical narrative

    Get PDF
    Objective: To create annotated clinical narratives with layers of syntactic and semantic labels to facilitate advances in clinical natural language processing (NLP). To develop NLP algorithms and open source components. Methods: Manual annotation of a clinical narrative corpus of 127 606 tokens following the Treebank schema for syntactic information, PropBank schema for predicate-argument structures, and the Unified Medical Language System (UMLS) schema for semantic information. NLP components were developed. Results: The final corpus consists of 13 091 sentences containing 1772 distinct predicate lemmas. Of the 766 newly created PropBank frames, 74 are verbs. There are 28 539 named entity (NE) annotations spread over 15 UMLS semantic groups, one UMLS semantic type, and the Person semantic category. The most frequent annotations belong to the UMLS semantic groups of Procedures (15.71%), Disorders (14.74%), Concepts and Ideas (15.10%), Anatomy (12.80%), Chemicals and Drugs (7.49%), and the UMLS semantic type of Sign or Symptom (12.46%). Inter-annotator agreement results: Treebank (0.926), PropBank (0.891–0.931), NE (0.697–0.750). The part-of-speech tagger, constituency parser, dependency parser, and semantic role labeler are built from the corpus and released open source. A significant limitation uncovered by this project is the need for the NLP community to develop a widely agreed-upon schema for the annotation of clinical concepts and their relations. Conclusions: This project takes a foundational step towards bringing the field of clinical NLP up to par with NLP in the general domain. The corpus creation and NLP components provide a resource for research and application development that would have been previously impossible

    The strength of co-authorship in gene name disambiguation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A biomedical entity mention in articles and other free texts is often ambiguous. For example, 13% of the gene names (aliases) might refer to more than one gene. The task of Gene Symbol Disambiguation (GSD) – a special case of Word Sense Disambiguation (WSD) – is to assign a unique gene identifier for all identified gene name aliases in biology-related articles. Supervised and unsupervised machine learning WSD techniques have been applied in the biomedical field with promising results. We examine here the utilisation potential of the fact – one of the special features of biological articles – that the authors of the documents are known through graph-based semi-supervised methods for the GSD task.</p> <p>Results</p> <p>Our key hypothesis is that a biologist refers to each particular gene by a fixed gene alias and this holds for the co-authors as well. To make use of the co-authorship information we decided to build the inverse co-author graph on MedLine abstracts. The nodes of the inverse co-author graph are articles and there is an edge between two nodes if and only if the two articles have a mutual author. We introduce here two methods using distances (based on the graph) of abstracts for the GSD task. We found that a disambiguation decision can be made in 85% of cases with an extremely high (99.5%) precision rate just by using information obtained from the inverse co-author graph. We incorporated the co-authorship information into two GSD systems in order to attain full coverage and in experiments our procedure achieved precision of 94.3%, 98.85%, 96.05% and 99.63% on the human, mouse, fly and yeast GSD evaluation sets, respectively.</p> <p>Conclusion</p> <p>Based on the promising results obtained so far we suggest that the co-authorship information and the circumstances of the articles' release (like the title of the journal, the year of publication) can be a crucial building block of any sophisticated similarity measure among biological articles and hence the methods introduced here should be useful for other biomedical natural language processing tasks (like organism or target disease detection) as well.</p

    Clinical narrative analytics challenges

    Get PDF
    Precision medicine or evidence based medicine is based on the extraction of knowledge from medical records to provide individuals with the appropriate treatment in the appropriate moment according to the patient features. Despite the efforts of using clinical narratives for clinical decision support, many challenges have to be faced still today such as multilinguarity, diversity of terms and formats in different services, acronyms, negation, to name but a few. The same problems exist when one wants to analyze narratives in literature whose analysis would provide physicians and researchers with highlights. In this talk we will analyze challenges, solutions and open problems and will analyze several frameworks and tools that are able to perform NLP over free text to extract medical entities by means of Named Entity Recognition process. We will also analyze a framework we have developed to extract and validate medical terms. In particular we present two uses cases: (i) medical entities extraction of a set of infectious diseases description texts provided by MedlinePlus and (ii) scales of stroke identification in clinical narratives written in Spanish
    corecore