68 research outputs found

    Dipole states in stable and unstable nuclei

    Full text link
    A nuclear structure model based on linear response theory (i.e., Random Phase Approximation) and which includes pairing correlations and anharmonicities (coupling with collective vibrations), has been implemented in such a way that it can be applied on the same footing to magic as well as open-shell nuclei. As applications, we have chosen to study the dipole excitations both in well-known, stable isotopes like 208^{208}Pb and 120^{120}Sn as well as in the neutron-rich, unstable 132^{132}Sn nucleus, by addressing in the latter case the question about the nature of the low-lying strength. Our results suggest that the model is reliable and predicts in all cases low-lying strength of non collective nature.Comment: 16 pages, 6 figures; submitted for publicatio

    Spectrum and thermal fluctuations of a microcavity polariton Bose-Einstein condensate

    Get PDF
    The Hartree-Fock-Popov theory of interacting Bose particles is developed, for modeling exciton-polaritons in semiconductor microcavities undergoing Bose-Einstein condensation. A self-consistent treatment of the linear exciton-photon coupling and of the exciton non-linearity provides a thermal equilibrium description of the collective excitation spectrum, of the polariton energy shifts and of the phase diagram. Quantitative predictions support recent experimental findings

    Partially suppressed long-range order in the Bose-Einstein condensation of polaritons

    Full text link
    We adopt a kinetic theory of polariton non-equilibrium Bose-Einstein condensation, to describe the formation of off-diagonal long-range order. The theory accounts properly for the dominant role of quantum fluctuations in the condensate. In realistic situations with optical excitation at high energy, it predicts a significant depletion of the condensate caused by long-wavelength fluctuations. As a consequence, the one-body density matrix in space displays a partially suppressed long-range order and a pronounced dependence on the finite size of the system

    Relativistic RPA plus phonon-coupling analysis of pygmy dipole resonances

    Get PDF
    The relativistic random-phase approximation (RRPA) plus phonon-coupling (PC) model is applied in the analysis of E1 strength distributions in 208^{208}Pb and 132^{132}Sn, for which data on pygmy dipole resonances (PDR) have recently been reported. The covariant response theory is fully consistent: the effective nuclear interaction NL3 is used both to determine the spectrum of single-nucleon Dirac states, and as the residual interaction which determines the collective phonon states in the relativistic RPA. It is shown that the picture of the PDR as a resonant oscillation of the neutron skin against the isospin saturated proton-neutron core, and with the corresponding RRPA state characterized by a coherent superposition of many neutron particle-hole configurations, remains essentially unchanged when particle-vibration coupling is included. The effect of two-phonon admixtures is a weak fragmentation and a small shift of PDR states to lower excitation energy. Even though the PDR calculated in the extended model space of ph⊗ph \otimesphonon configurations contains sizeable two-phonon admixtures, it basically retains a one-phonon character and its dynamics is not modified by the coupling to low-lying surface vibrations.Comment: 17 pages, 3 figures, 4 table

    Instantaneous Shape Sampling - a model for the Îł\gamma-absorption cross section of transitional nuclei

    Get PDF
    The influence of the quadrupole shape fluctuations on the dipole vibrations in transitional nuclei is investigated in the framework of the Instantaneous Shape Sampling Model, which combines the Interacting Boson Model for the slow collective quadrupole motion with the Random Phase Approximation for the rapid dipole vibrations. Coupling to the complex background configurations is taken into account by folding the results with a Lorentzian with an energy dependent width. The low-energy energy portion of the Îł\gamma- absorption cross section, which is important for photo-nuclear processes, is studied for the isotopic series of Kr, Xe, Ba, and Sm. The experimental cross sections are well reproduced. The low-energy cross section is determined by the Landau fragmentation of the dipole strength and its redistribution caused by the shape fluctuations. Collisional damping only wipes out fluctuations of the absorption cross section, generating the smooth energy dependence observed in experiment. In the case of semi-magic nuclei, shallow pygmy resonances are found in agreement with experiment

    Covariant response theory beyond RPA and its application

    Get PDF
    The covariant particle-vibration coupling model within the time blocking approximation is employed to supplement the Relativistic Random Phase Approximation (RRPA) with coupling to collective vibrations. The Bethe-Salpeter equation in the particle-hole channel with an energy dependent residual particle-hole (p-h) interaction is formulated and solved in the shell-model Dirac basis as well as in the momentum space. The same set of the coupling constants generates the Dirac-Hartree single-particle spectrum, the static part of the residual p-h interaction and the particle-phonon coupling amplitudes. This approach is applied to quantitative description of damping phenomenon in even-even spherical nuclei with closed shells 208^{208}Pb and 132^{132}Sn. Since the phonon coupling enriches the RRPA spectrum with a multitude of ph⊗\otimesphonon states a noticeable fragmentation of giant monopole and dipole resonances is obtained in the examined nuclei. The results are compared with experimental data and with results of the non-relativistic approach.Comment: 12 pages, 4 figures, Proceedings of the NSRT06 Conferenc

    Many-body physics of a quantum fluid of exciton-polaritons in a semiconductor microcavity

    Full text link
    Some recent results concerning nonlinear optics in semiconductor microcavities are reviewed from the point of view of the many-body physics of an interacting photon gas. Analogies with systems of cold atoms at thermal equilibrium are drawn, and the peculiar behaviours due to the non-equilibrium regime pointed out. The richness of the predicted behaviours shows the potentialities of optical systems for the study of the physics of quantum fluids.Comment: Proceedings of QFS2006 conference to appear on JLT

    Collective excitations in the Unitary Correlation Operator Method and relativistic QRPA studies of exotic nuclei

    Full text link
    The collective excitation phenomena in atomic nuclei are studied in two different formulations of the Random Phase Approximation (RPA): (i) RPA based on correlated realistic nucleon-nucleon interactions constructed within the Unitary Correlation Operator Method (UCOM), and (ii) relativistic RPA (RRPA) derived from effective Lagrangians with density-dependent meson-exchange interactions. The former includes the dominant interaction-induced short-range central and tensor correlations by means of an unitary transformation. It is shown that UCOM-RPA correlations induced by collective nuclear vibrations recover a part of the residual long-range correlations that are not explicitly included in the UCOM Hartree-Fock ground state. Both RPA models are employed in studies of the isoscalar monopole resonance (ISGMR) in closed-shell nuclei across the nuclide chart, with an emphasis on the sensitivity of its properties on the constraints for the range of the UCOM correlation functions. Within the Relativistic Quasiparticle RPA (RQRPA) based on Relativistic Hartree-Bogoliubov model, the occurrence of pronounced low-lying dipole excitations is predicted in nuclei towards the proton drip-line. From the analysis of the transition densities and the structure of the RQRPA amplitudes, it is shown that these states correspond to the proton pygmy dipole resonance.Comment: 15 pages, 4 figures, submitted to Physics of Atomic Nuclei, conference proceedings, "Frontiers in the Physics of Nucleus", St. Petersburg, 28. June-1. July, 200

    Optical manipulation of the wave function of quasiparticles in a solid

    Get PDF
    Polaritons in semiconductor microcavities are hybrid quasiparticles consisting of a superposition of photons and excitons. Due to the photon component, polaritons are characterized by a quantum coherence length in the several micron range. Owing to their exciton content, they display sizeable interactions, both mutual and with other electronic degrees of freedom. These unique features have produced striking matter wave phenomena, such as Bose-Einstein condensation, or parametric processes able to generate quantum entangled polariton states. Recently, several paradigms for spatial confinement of polaritons in semiconductor devices have been established. This opens the way to quantum devices in which polaritons can be used as a vector of quantum information. An essential element of each quantum device is the quantum state control. Here we demonstrate control of the wave function of confined polaritons, by means of tailored resonant optical excitation. By tuning the energy and momentum of the laser, we achieve precise control of the momentum pattern of the polariton wave function. A theoretical model supports unambiguously our observations
    • …
    corecore