3,341 research outputs found

    Irrational behavior of algebraic discrete valuations

    Full text link
    We study algebraic discrete valuations dominating normal local domains of dimension two. We construct a family of examples to show that the Hilbert-Samuel function of the associated graded ring of the valuation can fail to be asymptotically of the form: quasi-polynomial plus a bounded function. We also show that the associated multiplicity can be irrational, or even transcendental

    The metallicity dependence of envelope inflation in massive stars

    Get PDF
    Recently it has been found that models of massive stars reach the Eddington limit in their interior, which leads to dilute extended envelopes. We perform a comparative study of the envelope properties of massive stars at different metallicities, with the aim to establish the impact of the stellar metallicity on the effect of envelope inflation. We analyse published grids of core-hydrogen burning massive star models computed with metallicities appropriate for massive stars in the Milky Way, the LMC and the SMC, the very metal poor dwarf galaxy I Zwicky 18, and for metal-free chemical composition. Stellar models of all the investigated metallicities reach and exceed the Eddington limit in their interior, aided by the opacity peaks of iron, helium and hydrogen, and consequently develop inflated envelopes. Envelope inflation leads to a redward bending of the zero-age main sequence and a broadening of the main sequence band in the upper part of the Hertzsprung-Russell diagram. We derive the limiting L/M-values as function of the stellar surface temperature above which inflation occurs, and find them to be larger for lower metallicity. While Galactic models show inflation above ~29 Msun, the corresponding mass limit for Population III stars is ~150 Msun. While the masses of the inflated envelopes are generally small, we find that they can reach 1-100 Msun in models with effective temperatures below ~8000 K, with higher masses reached by models of lower metallicity. Envelope inflation is expected to occur in sufficiently massive stars at all metallicities, and is expected to lead to rapidly growing pulsations, high macroturbulent velocities, and might well be related to the unexplained variability observed in Luminous Blue Variables like S Doradus and Eta Carina.Comment: 16 pages (with Appendix), accepted in A&

    Two-dimensional Induced Ferromagnetism

    Full text link
    Magnetic properties of materials confined to nanometer length scales are providing important information regarding low dimensional physics. Using gadolinium based Langmuir-Blodgett films, we demonstrate that two-dimensional ferromagnetic order can be induced by applying magnetic field along the in-plane (perpendicular to growth) direction. Field dependent exchange coupling is evident in the in-plane magnetization data that exhibit absence of hysteresis loop and show reduction in field required to obtain saturation in measured moment with decreasing temperature.Comment: 4 pages, 3 postscript figures, corrected paper forma

    Interplay of 4f-3d Magnetism and Ferroelectricity in DyFeO3

    Full text link
    DyFeO3 exhibits a weak ferromagnetism (TNFe ~ 645 K) that disappears below a spin-reorientation (Morin) transition at TSRFe ~ 50 K. It is also known that applied magnetic field induces ferroelectricity at the magnetic ordering temperature of Dy-ions (TNDy ~ 4.5 K). Here, we show that the ferroelectricity exists in the weak ferromagnetic state (TSRFe < T < TN,C) without applying magnetic field, indicating the crucial role of weak ferromagnetism in inducing ferroelectricity. 57Fe M\"ossbauer studies show that hyperfine field (Bhf) deviates from mean field-like behaviour that is observed in the weak ferromagnetic state and decreases below the onset of spin-reorientation transition (80 K), implying that the Bhf above TSR had additional contribution from Dy-ions due to induced magnetization by the weak ferromagnetic moment of Fe-sublattice and below TSR, this contribution decreases due to collinear ordering of Fe-sublattice. These results clearly demonstrate the presence of magnetic interactions between Dy(4f) and Fe(3d) and their correlation with ferroelectricity in the weak ferromagnetic state of DyFeO3.Comment: 5 pages, 6 figures, published in EP

    Sustaining supercooled mixed phase via resonant oscillations of the order parameter

    Full text link
    We investigate the dynamics of a first order transition when the order parameter field undergoes resonant oscillations, driven by a periodically varying parameter of the free energy. This parameter could be a background oscillating field as in models of pre-heating after inflation. In the context of condensed matter systems, it could be temperature TT, or pressure, external electric/magnetic field etc. We show that with suitable driving frequency and amplitude, the system remains in a type of mixed phase, without ever completing transition to the stable phase, even when the oscillating parameter of the free energy remains below the corresponding critical value (for example, with oscillating temperature, TT always remains below the critical temperature TcT_c). This phenomenon may have important implications. In cosmology, it will imply prolonged mixed phase in a first order transition due to coupling with background oscillating fields. In condensed matter systems, it will imply that using oscillating temperature (or, more appropriately, pressure waves) one may be able to sustain liquids in a mixed phase indefinitely at low temperatures, without making transition to the frozen phase.Comment: 17 pages, 7 figures, Expanded version with more detail

    Coupling parameters and the form of the potential via Noether symmetry

    Get PDF
    We explore the conditions for the existence of Noether symmetries in the dynamics of FRW metric, non minimally coupled with a scalar field, in the most general situation, and with nonzero spatial curvature. When such symmetries are present we find general exact solution for the Einstein equations. We also show that non Noether symmetries can be found. Finally,we present an extension of the procedure to the Kantowski- Sachs metric which is particularly interesting in the case of degenerate Lagrangian.Comment: 13 pages, no figure

    A Systematic Study of Electronic Structure from Graphene to Graphane

    Full text link
    While graphene is a semi-metal, a recently synthesized hydrogenated graphene called graphane, is an insulator. We have probed the transformation of graphene upon hydrogenation to graphane within the framework of density functional theory. By analyzing the electronic structure for eighteen different hydrogen concentrations, we bring out some novel features of this transition. Our results show that the hydrogenation favors clustered configurations leading to the formation of compact islands. The analysis of the charge density and electron localization function (ELF) indicates that as hydrogen coverage increases the semi-metal turns into a metal showing a delocalized charge density, then transforms into an insulator. The metallic phase is spatially inhomogeneous in the sense, it contains the islands of insulating regions formed by hydrogenated carbon atoms and the metallic channels formed by contiguous bare carbon atoms. It turns out that it is possible to pattern the graphene sheet to tune the electronic structure. For example removal of hydrogen atoms along the diagonal of the unit cell yielding an armchair pattern at the edge gives rise to a band gap of 1.4 eV. We also show that a weak ferromagnetic state exists even for a large hydrogen coverage whenever there is a sub-lattice imbalance in presence of odd number of hydrogen atoms.Comment: This is an author-created, un-copyedited version of an article accepted for publication in J. Phys.: Condens. Matte

    New Findings from Positron Annihilation Measurements on Superconducting Transition in Oxides

    Get PDF

    On time and the quantum-to-classical transition in Jordan-Brans-Dicke quantum gravity

    Get PDF
    Any quantum theory of gravity which treats the gravitational constant as a dynamical variable has to address the issue of superpositions of states corresponding to different eigenvalues. We show how the unobservability of such superpositions can be explained through the interaction with other gravitational degrees of freedom (decoherence). The formal framework is canonically quantized Jordan-Brans-Dicke theory. We discuss the concepts of intrinsic time and semiclassical time as well as the possibility of tunneling into regions corresponding to a negative gravitational constant. We calculate the reduced density matrix of the Jordan-Brans-Dicke field and show that the off-diagonal elements can be sufficiently suppressed to be consistent with experiments. The possible relevance of this mechanism for structure formation in extended inflation is briefly discussed.Comment: 10 pages, Latex, ZU-TH 15/93, BUTP-93/1
    corecore