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ABSTRACT

Context. Recently it has been found that models of massive stars reach the Eddington limit in their interior, which leads to dilute
extended envelopes.
Aims. We perform a comparative study of the envelope properties of massive stars at different metallicities, with the aim to establish
the impact of the stellar metallicity on the effect of envelope inflation.
Methods. We analyse published grids of core-hydrogen burning massive star models computed with metallicities appropriate for
massive stars in the Milky Way, the LMC and the SMC, the very metal poor dwarf galaxy I Zwicky 18, and for metal-free chemical
composition.
Results. Stellar models of all the investigated metallicities reach and exceed the Eddington limit in their interior, aided by the opacity
peaks of iron, helium and hydrogen, and consequently develop inflated envelopes. Envelope inflation leads to a redward bending of
the zero-age main sequence and a broadening of the main sequence band in the upper part of the Hertzsprung-Russell diagram. We
derive the limiting L/M-values as function of the stellar surface temperature above which inflation occurs, and find them to be larger
for lower metallicity. While Galactic models show inflation above ∼ 29 M�, the corresponding mass limit for Population III stars is
∼ 150 M�. While the masses of the inflated envelopes are generally small, we find that they can reach 1 − 100 M� in models with
effective temperatures below ∼ 8000 K, with higher masses reached by models of lower metallicity.
Conclusions. Envelope inflation is expected to occur in sufficiently massive stars at all metallicities, and is expected to lead to rapidly
growing pulsations, high macroturbulent velocities, and might well be related to the unexplained variability observed in Luminous
Blue Variables like S Doradus and ηCarina.
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1. Introduction

Massive stars, although rare, are cosmic engines in the universe.
They drive the dynamical and chemical evolution of galaxies
with their strong stellar winds, high luminosities and spectac-
ular explosions. The earliest massive stars, i.e. the metal-free
Population III stars may have played a major role in the reion-
isation of the universe (Bromm et al. 2009). Furthermore, mas-
sive stars in low metallicity environments are primary candi-
dates for progenitors of long duration gamma ray bursts (Yoon
& Langer 2005; Woosley & Heger 2006), pair instability super-
novae (Heger & Woosley 2002; Langer et al. 2007) and superlu-
minous supernovae (Quimby et al. 2013; Inserra & Smartt 2014).
Accurate models of massive stars across a wide range of metal-
licities are therefore needed to facilitate comparisons with the
available observational data (Maeder & Meynet 2012; Langer
2012).

Recently evidence has accumulated that stars more massive
than the often quoted upper mass limit of ∼ 150 M� (Figer 2005)
exist in the local universe. For example, Crowther et al. (2010)
estimated present day masses of up to 260 M� for several stars
in the Tarantula nebula of the LMC. Furthermore, in the re-
cently concluded VLT-FLAMES Tarantula Survey of massive
stars in the LMC (Evans et al. 2011), Bestenlehner et al. (2014)
identified three stars with initial mass estimates above 150 M�.

∗ e-mail: dsanyal@astro.uni-bonn.de

Therefore models of very massive stars with up-to-date physics
have become increasingly relevant.

The mass-luminosity (M − L) relation for main-sequence
stars, L ∝ Mα, has α > 1. However, for constant opacity, α → 1
for M → ∞ (Kippenhahn & Weigert 1990). Therefore one might
wonder whether the Eddington limit, which is proportional to
L/M, is ever reached by stars.

The classical Eddington limit, that is proportional to the
electron-scattering opacity and the star’s L/M ratio, is not
reached for stars below ∼ 105 M� for Solar composition (Kato
1985, 1986). It was shown by Sanyal et al. (2015) that even
when the Rosseland mean opacity is considered, stars below
∼ 500 M� do not reach the Eddington limit at their surface. But,
when the Eddington limit is defined in the stellar interior (Langer
1997), Sanyal et al. (2015) showed that main-sequence models
with LMC composition reach and exceed the Eddington limit at
masses M & 40 M�. Such stellar models, instead of developing
a strong outflow, re-adjust their structure such that a dilute and
extended envelope is produced, a process which is called enve-
lope inflation. This effect was earlier pointed out by Ishii et al.
(1999) for zero-age main-sequence models, and by Petrovic
et al. (2006) and Gräfener et al. (2012) for helium star models.
As a result of such an envelope structure the surface tempera-
tures of these models are much lower than they would have been
without this effect, which has consequences for the further evo-
lution of the stars (Köhler et al. 2015). Indeed, the distribution of
OB stars in our Galaxy shows many stars with masses > 30 M�
in the effective temperature range 10 000 − 30 000 K, and it has
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been suggested that these stars are affected by envelope inflation
(Castro et al. 2014).

The metallicity (Z) of a star affects many of its physical prop-
erties like the wind mass-loss rate, opacity and the equation of
state. The OPAL opacity tables from Iglesias et al. (1992) in-
troduced an opacity peak at a temperature of T ∼ 2 × 105 K
caused by bound-bound and bound-free transitions of iron-group
elements. This so-called Fe-bump opacity drastically changed
the envelope structure of stellar models (Stothers & Chin 1993)
and even new pulsational instability strips were discovered in
the Hertzsprung-Russell diagram (Pamyatnykh 1999). Since the
Eddington factor depends on opacity, the Fe-bump which is a
function of Z plays a major role in determining the extent of
envelope inflation in a massive star model.

In this paper, we extend the study by Sanyal et al. (2015) over
a wide range of metallicities from Galactic to metal-free, and in-
vestigate the properties of the stellar models in the context of the
Eddington limit and envelope inflation. Section 2.1 presents an
overview of the grids of models used in this study while in Sec. 3
and 4 respectively we explain our concept of the Eddington limit
and envelope inflation. We discuss how the Eddington limit and
envelope inflation change with metallicity in Sec. 5. We give our
conclusions in Sec. 6.

2. Method

2.1. Stellar models

The stellar models used in the present study were computed with
a one-dimensional hydrodynamic Lagrangian code (BEC) that
includes up-to-date input physics including rotation (for details,
see Heger et al. 2000; Yoon et al. 2006; Brott et al. 2011; Köhler
et al. 2015, and references therein). Grids of models computed
with five metallicities were used, appropriate for the Milky Way
(MW), LMC, SMC, I Zwicky 18 (I Zw18 ) and for Population III
(Pop III) stars. The MW, the LMC and the SMC models are pub-
lished in Brott et al. (2011) and Köhler et al. (2015), whereas the
I Zw18 and the Pop III models are from Szécsi et al. (2015) and
Yoon et al. (2012), respectively. The initial chemical composi-
tions and the initial mass ranges in each of these grids are sum-
marised in Table 1. In this paper, we consider only core hydrogen
burning models that are either non-rotating or slowly rotating,
i.e. with vrot ≤ 100 km s−1, vrot being the equatorial rotational
velocity at the photosphere.

The standard non-adiabatic mixing length theory (MLT,
Böhm-Vitense 1958; Kippenhahn & Weigert 1990) was used to
model the energy transport in the convective zones in the stel-
lar interior with a mixing length parameter of α = l/Hp = 1.5
(Langer 1991), where l is the mixing length and Hp is the pres-
sure scale height. A discussion of the properties of convection
in the inflated envelopes of our LMC models can be found in
Sanyal et al. (2015). The parameters for core-convective over-
shooting (α = 0.335) and rotationally induced chemical mix-
ing ( fc = 0.0228, fµ = 0.1) were adopted from Brott et al.
(2011). Transport of angular momentum by Spruit-Tayler dy-
namo (Spruit 2002) was treated following Petrovic et al. (2005).
Radiative opacities from the OPAL tables (Iglesias & Rogers
1996) were used for temperatures above 8000 K. For tem-
peratures below 8000 K the opacity tables from Alexander &
Ferguson (1994) were used.

2.2. Mass-loss

MW, LMC, SMC and I Zw18 models:

For stellar models with effective temperatures higher than
22 000 K, the mass-loss prescription from Vink et al. (2001) was
employed to account for the winds of O- and B-type stars. The
mass-loss rate prescription from Nieuwenhuijzen & de Jager
(1990) was used at effective temperatures less than 22 000 K, if
the Nieuwenhuijzen & de Jager (1990) mass-loss rate exceeded
that of Vink et al. (2001). In the Wolf-Rayet (WR) evolution-
ary phases, i.e. when the surface helium mass fraction (Ys) is
greater than 70%, the empirical mass-loss rates from Hamann
et al. (1995) was used, scaled down by a factor of 10 (Yoon et al.
2006). For 0.4 ≤ Ys ≤ 0.7, a linear interpolation between the
Vink et al. (2000, 2001) mass-loss rate and the Hamann et al.
(1995) mass-loss rate reduced by a factor of 10, was used.

Pop III models:

For metal-free hot stars, a very low mass-loss rate of
10−14 M� yr−1 is predicted near the classical Eddington limit
(Marigo et al. 2003; Krtička & Kubát 2006; Yoon et al. 2012).
Therefore, in the Pop III grid stellar wind mass-loss rates were
applied only if there was any surface enrichment of CNO ele-
ments by rotational mixing. Hence the non-rotating models prac-
tically did not suffer from any mass-loss over their lifetime. For
rotating stars, the mass-loss prescriptions from Kudritzki et al.
(1989) and Nieuwenhuijzen & de Jager (1990) were used for
Teff > 104 K and Teff < 104 K respectively, with a metallicity
scaling of Z0.69.

Rotationally enhanced mass-loss

The effect of rotationally enhanced mass-loss (Friend & Abbott
1986; Langer 1997) is treated in our models as,

Ṁ(vrot) = Ṁ(vrot = 0)
(

1
1 −Ω

)0.43

, (1)

where

Ω =
vrot

vcrit
and vcrit =

√
GM

R
(1 − Γavg). (2)

Herev Γavg is the Eddington factor averaged over the region with
optical depth between 2/3 and 100. The enhancement of the
mass-loss rate is limited by the thermal timescale mass-loss rate
of the star to avoid the singularity in Eq. (1) as v approaches vcrit
(Yoon et al. 2012). Note that for the models analysed in this pa-
per the enhancement to the mass-loss rate is negligible.

2.3. Additional models

In the evolutionary sequences computed by Brott et al. (2011)
and Köhler et al. (2015), the data regarding the structure of a stel-
lar model is stored for every 50th computed model, i.e., at non-
regular time intervals since the time steps are not uniform along
the evolution. For the I Zw18 sequences, every 250th model is
stored. In order to have a higher model density in certain parts of
the HR diagram for the present study, several evolutionary tracks
(without rotation) were re-computed with the same input param-
eters, as summarised in Table 2.
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Table 1: The initial chemical compositions (in mass fraction), the metallicities and the range of initial masses of the stellar evolu-
tionary sequences that were used in this study.

MW LMC SMC I Zw18 PopIII

XFe 1.02 × 10−3 4.64 × 10−4 2.52 × 10−4 2.52 × 10−5 0
XO 4.14 × 10−3 2.65 × 10−3 1.14 × 10−3 1.14 × 10−4 0
XHe 0.264 0.256 0.251 0.248 0.240
Z 0.0088 0.0047 0.0021 0.00021 0

Minit ( M�) 3 − 100 1 − 500 5 − 60 9 − 294 10 − 1000

Table 2: The initial masses (in units of M�) of the non-rotating
evolutionary sequences that were re-computed for this study.

MW LMC SMC I Zw18

40 40 50 100
50 60 60 150
60 70 80 196
80 100

3. The Eddington Limit

Conventionally, a star is considered to be at the Eddington limit
when its luminosity L equals its Eddington luminosity (LEdd),
defined as the condition when the radiative acceleration (grad)
balances the gravitational acceleration (g) at the stellar surface.
The radiative acceleration is proportional to the stellar luminos-
ity and the opacity κ. Considering electron scattering as the only
source of opacity, i.e., κ = κe, the classical Eddington factor is
defined as

Γe =
grad

g
=

κeL
4πcGM

, (3)

where the physical constants have their usual meaning. Using
this definition, stellar models reach the Eddington limit only at
masses M & 105 M� (Kato 1986).

When the Rosseland mean opacities are used, the LMC mod-
els from Köhler et al. (2015) do not reach the Eddington limit at
their surface, even at 500 M� (Sanyal et al. 2015). However, one
can also define an Eddington factor locally (Langer 1997) such
that

Γ(r) :=
Lrad(r)
LEdd(r)

=
κ(r)Lrad(r)
4πcGM(r)

, (4)

where M(r) is the Lagrangian mass coordinate, κ(r) is the
Rosseland mean opacity and L(r) is the local luminosity. Since
the convective luminosity does not contribute to the radiative
acceleration, it is not considered in Eq. (4). Using this defini-
tion, core-hydrogen burning LMC models with masses as low
as ∼ 40 M� reach the Eddington limit in their interior (Sanyal
et al. 2015). However, instead of a super-Eddington outflow, a
hydrostatic structure with an extended envelope is obtained (cf.
Sec. 4), often associated with a density inversion (cf. Fig. 9 in
Sanyal et al. 2015). It has been argued in the literature (Langer
1997; Sanyal et al. 2015) that the concept of the Eddington limit
as a stability criterion does not apply in the stellar interior. If not
explicitly stated otherwise, we will use the definition in Eq. 4 for
the Eddington factor in the rest of the paper.

Since the Rosseland mean opacity κ depends on the chemical
composition and hence the metallicity, the Eddington factor is

also expected to be a function of metallicity. Sanyal et al. (2015)
showed that in the LMC models from Köhler et al. (2015), the
opacity peaks caused by the partial ionisation of iron group ele-
ments, helium and hydrogen shape the profile of the Eddington
factor inside a massive star model. In this paper we investigate
how the metallicity influences the Eddington factor in the stellar
interior.

4. Envelope inflation

As already mentioned above, stellar models reaching the
Eddington limit in their interior have extended and dilute en-
velopes (Ishii et al. 1999; Gräfener et al. 2012; Köhler et al.
2015; Sanyal et al. 2015). When the Eddington limit is reached
in the interior, either Lrad or the opacity κ needs to be reduced.
But, since energy transport by convection may be inefficient be-
cause of low densities, Lrad can not be significantly reduced in
this case, and hence the opacity needs to decrease via a further
drop in density. As a result an inflated envelope develops such
that Γ ≈ 1 is maintained across the inflated region. An example
of the density structure of such an inflated stellar model is shown
in Fig. 1 where the region with a steeply declining density pro-
file is referred to as the non-inflated core and the region with a
relatively flat density profile is referred to as the inflated enve-
lope. Whereas the core radius (rcore) of this model is 25.2 R�,
the extent of the inflated envelope is about 1.7 times that of rcore.
The profile of the Eddington factor shows that in the core it is
Γ < 1, but in the envelope Γ ≈ 1. At the surface of the star, Γ
drops to 0.82.

To our knowledge, an analytical criterion for inflation is
not available in the literature (however, see Sec. 3.4 and 3.5 in
Owocki 2015) for models at various evolutionary stages, i.e from
hot WR stars (Petrovic et al. 2006) to cool core-hydrogen burn-
ing red supergiants (Gräfener et al. 2012; Sanyal et al. 2015;
Szécsi et al. 2015). We note that envelope inflation is different
from the formation of extended envelopes in classical red super-
giants, as those are post main-sequence stars with a shell-burning
source that is responsible for the envelope expansion, through
the so-called mirror principle (Kippenhahn & Weigert 1990). In
this study we follow Sanyal et al. (2015) to determine whether a
stellar model is inflated or not. Since inflation is related to high
values of the Eddington factor, which in turn implies dominance
of radiation pressure over gas pressure, the inflated region must
have a small enough value of β, where β is the ratio of the gas
pressure (Pgas) to the total pressure (P). For all the model grids
except the Pop III grid, we therefore adopt a threshold value of
β = 0.15 to identify the base of the inflated envelope rcore in a
stellar model, in accordance with Sanyal et al. (2015). For the
Minit = 1000 M� sequences in the Pop III grid we use a lower
threshold β = 0.1, because the mass averaged value of β ( and
the β-value in the centre) drops below 0.15 for some models in
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Fig. 1: Density profile of a 79 M� solar metallicity core-
hydrogen burning model showing the inflated envelope. The
model had an initial mass of 100 M�. The radial co-ordinate has
been scaled with the core radius rcore. The blue line (refer to the
right Y-axis) shows the run of the Eddington factor Γ (Eq. 4)
in the interior of the model. The Eddington factor gets close to
unity in the inflated region.

these sequences, as expected for models with extremely high lu-
minosities. For all other model sequences of lower masses in the
Pop III grid, we use β = 0.15. We motivate our choice of using
a threshold value of β to identify the occurrence of an inflated
envelope below.

The equation of hydrostatic equilibrium inside a star is given
as

dP
dr

= −ρg, (5)

where ρ is the density at r. Writing P = Pgas + Prad where the
radiation pressure is Prad = 1

3 aT 4, it is,

−
1
ρg

dPrad

dr
= Γ, (6)

and

−
1
ρg

dPgas

dr
= 1 − Γ. (7)

Therefore, Γ→ 1 leads to a vanishing gas pressure gradient and
Γ > 1 in the hydrostatic stellar interior merely implies a positive
gas pressure gradient (Joss et al. 1973; Paxton et al. 2013). Using
Eq. (5) in Eq. (7), we get

dPgas

dP
=

d(βP)
dP

(8)

= β + P
dβ
dP

(9)

= 1 − Γ. (10)

Locally, for β either constant or slowly varying, which is gener-
ally true in inflated envelopes (Sanyal et al. 2015, cf. Fig. 1), it
is

Γ ' 1 − β. (11)

Therefore Γ . 1 implies a low value of β. Since we adopted
β = 0.15 as the inflation criterion, we expect to find inflated
models with Γ > 0.85, and this is indeed the case (Sanyal et al.
2015). Equation 11 was earlier arrived at by Gräfener et al.

(2012) and the validity of the assumption of a constant β in the
inflated envelope was shown in studies by Gräfener et al. (2012)
and Sanyal et al. (2015).

To show that Eq. (11) is consistent with the occurrence of a
flat density profile, Eq. (7) can also be written as

Γ − 1 =
1
ρg

d
dr

(
RρT
µ

)
. (12)

Rearranging Eq. (12) and dividing by ρT on both sides (assum-
ing a constant µ), we get

1
Hρ

:=
d ln ρ

dr
=

µ

RT
(Γ − 1)g −

d ln T
dr

=
gµ
RT

(Γ − 1 + ∇β) ,

where Hρ is the density scale height and ∇ is the temperature
gradient defined as ∇ := d ln T

d ln P . Substituting β = 1 − Γ in the
above expression, we obtain

1
Hρ

=
µg
RT

(∇ + 1)(Γ − 1), (13)

which implies that Hρ → ∞ as Γ → 1. Therefore, when Γ(r)
is close to unity, the density scale height becomes very large
and leads to an extended, flat density profile which we iden-
tify as a signature of inflation. We further note that a vanishing
density gradient, i.e., dρ

dr = 0, is equivalent with the condition
V = d ln P

d ln r = (GMr/r)/(P/ρ) = 1.
Quantitatively, we define inflation in a stellar model as

∆r/rcore := (R? − rcore)/rcore, where R? is the stellar radius and
rcore is the radial co-ordinate where the β value drops below 0.15
for the first time in the stellar interior. Since there is some arbi-
trariness in our inflation criterion only those models for which
our criterion predicts ∆r/rcore > 0.05 are considered to be in-
flated.

Langer (1997) showed that if the Eddington factor is defined
in the stellar interior as

Γ′(r) =
κ(r)L(r)

4πcGm(r)
, (14)

i.e., taking the total luminosity into account, then the
Schwarzschild criterion for convective instability can be written
in the following form:

Γ′(r) ≥ (1 − β)
32 − 24β

32 − 24β − β2 . (15)

For β � 1, the above inequality reduces to

Γ′(r) ≥ (1 − β). (16)

Since Γ = Γ′
Lrad
L from Eqns. (4) and (15), the above inequality

can be written as
Γ ≥ (1 − β)

Lrad

L
(17)

Since Lrad ≤ L everywhere inside the star, from Eqns. (11) and
(16) we conclude that the inflated envelope will always be con-
vectively unstable. Furthermore, the densities in the sub-surface
convection zones of massive stars are low, and convection is
strongly non-adiabatic. As a consequence, particularly in the hot
models (Teff & 15 000 K), the luminosity carried by convec-
tion is much smaller than that carried by radiation, and hence
Lrad/L ≈ 1, or Γ ≈ Γ′.
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Fig. 2: The zero-age main-sequence (solid lines) and the terminal-age main-sequence lines (dotted lines) above log (L/L�) > 4 of
the analysed stellar models at different metallicities. The masses of some representative models (black squares) are indicated along
the ZAMS. The position of the TAMS (in the model grid) where they bend towards cooler effective temperatures are marked with
coloured dots and the the corresponding initial masses of these models are labelled alongside.

5. Results

5.1. Hertzsprung-Russell (HR) diagram

The HR diagram in Fig. 2 shows the zero-age main-sequence
(ZAMS) and the terminal-age main-sequence (TAMS) of the
analysed non-rotating models. The ZAMS is defined by the con-
dition that 3% of hydrogen (by mass) has been burnt whereas the
TAMS is defined by the location at which the models reach the
maximum radius over their main-sequence lifetime, i.e., until the
central helium mass fraction is < 0.98.

The ZAMSs of the different metallicities are located roughly
parallel to one another up to log (L/L�) ∼ 6 in the HR diagram ,
such that the Pop III ZAMS has the highest Teff (and smallest ra-
dius) and the MW ZAMS has the lowest Teff (and largest radius)
for corresponding model masses.

The LMC ZAMS reaches a maximum Teff of ∼ 57 000 K and
then starts to bend towards lower values around log (L/L�) ∼
6.6, that corresponds to a mass of ∼ 200 M�. Above this criti-
cal mass the surface temperature of the ZAMS models decrease
for increasing mass. The lower the metallicity, the higher is the
luminosity and the effective temperature at which the bend is ex-
pected to be located (Ishii et al. 1999). This feature is not seen
for all the metallicities in Fig. 2 because the initial mass ranges
of the evolutionary sequences do not extend to high enough val-
ues (see Table 1). Nevertheless one can notice an increase in the
slope of the ZAMS’s in the upper HR diagram.

Using the latest OPAL opacities, the bending of the ZAMS
was earlier investigated by Ishii et al. (1999). They computed
models with metallicities ranging from Z = 0.1 to Z = 0.004
and found that the ZAMS curves redwards at sufficiently high
masses for all the metallicities. The Solar metallicity ZAMS in
their study had a bend at M ∼ 100 M� which is consistent with
our results.

The redward curving of the ZAMS is a consequence of enve-
lope inflation of massive luminous stars, as discussed in Sec. 4.
When the layers in the stellar interior reach the Eddington limit
either because of an opacity bump or because of a high L/M ra-
tio, the high radiation pressure pushes the layers outwards such
that density and hence opacity decreases, and the Eddington fac-
tor obtains a value . 1.

If convection is efficient then the star does not need to re-
adjust its structure, but in the luminous stars discussed here the
low densities in their outer layers imply that convective energy
transport within the framework of the standard MLT is not ef-
ficient enough to bring down the Eddington factor below one,
even though the fraction of the total luminosity carried by con-
vection can exceed 90% in the coolest models (cf. Sanyal et al.
2015). Therefore the envelope expands giving rise to a core-halo
density structure (Fig. 1).

The redward bend is also present in the TAMS lines of all
metallicities. The higher the metallicity, the lower is the lumi-
nosity at which the bend occurs, similar to the trend expected

5
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Table 3: Model properties (mass, luminosity, effective tempera-
ture and the classical Eddington factor) at the points marked by
filled dots in Fig. 2 where the TAMSs bend redwards.

Z Minit ( M�) Mnow ( M�) log (L/L�) Teff [K] Γe

MW 25 23.6 5.27 20783 0.20
LMC 25 24.4 5.29 24066 0.21
SMC 30 29.3 5.48 25409 0.26

I Zw18 34 33.8 5.59 30787 0.30
PopIII 60 60.0 6.03 37417 0.47

for the ZAMS lines. The TAMS however curves redwards at a
lower luminosity than the ZAMS. For example, the TAMS for
the LMC bends at log (L/L�) ≈ 5.3 whereas the ZAMS bends
at log (L/L�) ≈ 6.6. From the mass-luminosity relation for ho-
mologous stars, we know that L ∝ µβ for a fixed mass, where
the exponent β lies in the range ∼ 1.3 . . . 2 for masses between
100 − 500 M� on the ZAMS (cf. Fig. 17 in Köhler et al. 2015)
such that higher masses have lower values of β. Therefore, at the
TAMS a model has a higher L/M value than at ZAMS because
of a higher mean molecular weight.

The stellar parameters at the points (marked with filled dots
in Fig. 2) where the TAMS lines bend towards cooler effective
temperatures are noted in Table 3. This feature indicates the on-
set of envelope inflation because below this bend we do not find
any TAMS model to be inflated but above the bend we find in-
flated models. With a decrease in metallicity the opacity in the
stellar envelope decreases (cf. Sec. 5.4) and hence Γ ≈ 1 can
be achieved only with a higher L/M value. Therefore the low-
Z TAMS models show envelope inflation at higher luminosities.
The TAMS extends to temperatures below ∼ 5000 K, leading to
core hydrogen-burning red supergiant models. We note that the
lowest luminosity at which we identify an inflated model on the
TAMS is higher than the luminosity at which the bend is located.
This might be related to our ad-hoc criterion for inflation.

The TAMS lines for the MW, LMC and I Zw18 models bend
bluewards above log (L/L�) of 5.7, 6.0 and 6.8 respectively
(Brott et al. 2011; Köhler et al. 2015). This has not been included
in Fig. 2 for the sake of clarity. The blueward bend occurs be-
cause the mass-loss rates in this part of the HR diagram are high
enough to strip the hydrogen-rich outer layers of the models and
produce helium-rich WR models (Brott et al. 2011; Köhler et al.
2015). Once the helium-rich layers are exposed, the mass-loss
rates increase even further such that the models evolve towards
higher surface temperatures, towards the helium ZAMS.

5.2. The spectroscopic HR diagram

In the spectroscopic HR (sHR) diagram introduced by Langer &
Kudritzki (2014), instead of the luminosity the quantity L :=
T 4

eff
/g is plotted as a function of the effective temperature. The

quantity L is proportional to Γe such that

Γe =
κeL

4πcGM
=
κeσT 4

eff

cg
=
κeσ

c
L , (18)

where the constants have their usual meaning. Hence for Solar
hydrogen abundance,

log(Γe) ' log(L /L�) − 4.6. (19)

Figure 3 shows the maximum Eddington factor Γmax in the
interior of the analysed models for the five grids. Since the iron

bump opacity increases non-linearly (cf. Sec. 5.4) with increas-
ing iron abundance, i.e., with increasing metallicity (Fig. 7), lay-
ers in the stellar interior reach the Eddington limit at a lower
L , i.e., at a lower L/M. This is demonstrated in the different
panels of Fig. 3. Whereas we find models with Γmax > 0.9 for
masses as low as ∼ 30 M� in the MW grid, the same is achieved
at M ∼ 100 M� in the Pop III grid. Furthermore, an evolutionary
model with a higher initial mass encounters a higher Γmax earlier
in its evolution because of its higher L/M ratio. For example, the
50 M� MW sequence starts to develop super-Eddington layers in
the midst of its main-sequence life, whereas the 80 M� sequence
already has Γmax > 1 on its ZAMS.

In the MW and the LMC grids, there are models with
Γmax > 1 in the Teff range 35 − 55 kK. These models have the
Fe opacity peak close to their surface where convective energy
transport is inefficient such that Γmax reaches values above one
(Sanyal et al. 2015). In the temperature range 20 − 30 kK but at
log (L /L�) > 4.4, we also find models with Γmax > 1. These
models are hydrogen-deficient, either because of strong wind
mass-loss or because of rotationally-induced mechanical mass-
loss in the past. The super-Eddington layers in these models are
caused by the helium opacity bump located close to their sur-
face, coupled with inefficient convection. The models with SMC
metallicity or lower do not evolve to have helium-rich envelopes
during their main-sequence evolution, at least not in the mass
and rotational velocity range considered here. For the SMC and
the I Zw18 metallicity, the Fe-opacity peak, although present,
is much weaker compared to the MW and the LMC. In other
words, to reach the same value of Γmax the models with lower
metallicity need to have a higher L/M ratio.

In the 60 M� MW sequence for example, Γmax exceeds unity
very close to the ZAMS but at Teff < 32 kK Γmax falls below one.
This drop in Γmax is explained by relatively efficient convection
in the envelope as the Fe-bump moves deeper into the star where
densities are relatively higher. The evolution of Γmax versus Teff

for the 60 M� sequence is shown in Fig. 4. The increase of Γmax
at Teff < 14 000 K is explained by strong mass-loss that increases
the L/M ratio and the surface helium abundance. However we
note that Γe increases throughout its main-sequence evolution.
A similar trend exists in other evolutionary sequences in Fig. 3.

None of the Pop III models in the investigated parameter
range have Γmax > 1 at Teff > 10 000 K. Since the Fe-bump is
completely absent, Γ = 1 is never reached. Neither are these
models helium-enriched at their surface because of negligible
wind mass-loss that would have increased their L/M ratio.

The log Γe values shown on the right Y-axis in Fig. 3 gives
little information about the Γmax in the stellar interior. For exam-
ple the 80 M� MW ZAMS model has super-Eddington layers in
its envelope but its Γe value is only 0.27. This shows that Γe is
not a good proxy for the true Γ while investigating the structure
and the stability of massive star envelopes.

At the stellar surface the classical Eddington factor can not
exceed unity if hydrostatic equilibrium is to be maintained.
Therefore Γe = 1 is an impenetrable upper limit (Eddington
1926; Langer & Kudritzki 2014). However in the LMC grid there
are apparently many models with Γe > 1 (Fig. 3), but their sur-
face helium mass fraction exceeds Ys = 0.8 (Köhler et al. 2015).
The true Γe = 1 for these models therefore is located at a higher
L such that they all lie below it. For example, if X = 0 the
Γe = 1 line in Fig. 3 shifts upwards by 0.24 dex.

Across all the metallicities, there are models with Γmax > 1
at Teff < 9000 K. This is because of the opacity peak caused
by hydrogen recombination, and hence is not influenced by the
metal content in the star. The Γmax values of these models can
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Fig. 3: Spectroscopic Hertzsprung-Russell diagrams showing the non-rotating and slowly-rotating core-hydrogen burning models
in the five grids corresponding to the different metallicities (see labels). The left Y-axis shows the quantity log(L /L�) with L :=
T 4

eff
/g whereas the right Y-axis shows the corresponding values of log(Γe), in all the five panels. The Γe values are computed at the

stellar surface considering electron-scattering opacity with a hydrogen abundance of X = 0.73 (completely ionised) and the black
dotted line marks the location Γe = 1. Note that the assumption of completely ionised hydrogen breaks down for models with Teff

below ≈ 10 000 K. Black, blue and red dots correspond to models with Γmax < 0.9, 0.9 < Γmax < 1 and Γmax > 1, respectively.
Only the models with log(L /L�) > 3.8 have been shown. The black solid line is the ZAMS and the masses of some representative
models (in units of M�) have been indicated.

be as high as 6 for the MW models to & 8 for the Pop III mod-
els, i.e., in the outer envelope (around the hydrogen recombina-
tion temperature) of such a model the luminosity transported by
radiation can be a few times the Eddington luminosity (Sanyal
et al. 2015). The opacities in the hydrogen recobination zone can
be ∼ 10 times that of the Fe-opacity peak. Hydrostatic equilib-
rium in these super-Eddington layers is maintained by building

up a positive gas pressure gradient and a positive density gradi-
ent (Joss et al. 1973; Sanyal et al. 2015).

One might expect that these peculiar structures, coupled with
the fact that they are located beyond the observed Humphreys-
Davidson (H-D) limit (Humphreys & Davidson 1979) are prone
to various instabilities and possibly undergo violent mass-loss
episodes such that it prevents them from staying long enough on
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the cool side of the H-D limit. However, in our hydrodynamic
1-D models we find no sign of a super-Eddington outflow.

5.3. Dependence of envelope inflation on metallicity

The extent of envelope inflation in the analysed models is sum-
marised in the sHR diagrams in Fig. 5. Comparing with Fig. 3,
we note that barring a few, none of the models with Γmax < 0.9
are inflated whereas models with Γmax > 1 all have inflated en-
velopes. Therefore, as mentioned in Sec. 4 the occurrence of in-
flated envelopes is related to models approaching the Eddington
limit (as defined by Eq. (4)) in their interior. In general, the hotter
models are less inflated than the cooler models for a given L ,
in agreement with the results obtained by Sanyal et al. (2015).
This is expected because the effective temperature is strongly
affected by inflation. The strongest inflation is found in models
with Teff . 8000 K, for all Z. The most extreme cases are found
in the I Zw18 and the Pop III models, where ∆r/rcore can go up
to a few hundred.

The Eddington limit is either approached with large opacities
or with a high L/M ratio. Models with lower metal abundances,
i.e. with a weaker Fe-opacity bump, need to attain a higher L/M
ratio, or a higher Γe, to reach the Eddington limit and inflate
their envelopes. Therefore inflation starts at higher L as Z goes
down. However, we reiterate that reaching the Eddington limit
is a sufficient, but not a necessary condition for envelope infla-
tion to occur (cf. Eqns. (11) and (13)) because the gas pressure
gradient might also contribute to inflating the envelope.

Figure 6 marks the regions in the sHR diagram that separates
the non-inflated models from the inflated ones, considering the
same sample as in Fig. 5. For each model grid the Teff range of
the models were divided into 20 equispaced bins and in each bin
the un-inflated model with the highest L was selected. These
data points were then joined and the resulting line was smoothed
using Bézier splines. These lines do not extend to Teff values
below ∼ 10 000 K (see Fig. 5), because we do not find any core-
hydrogen burning model that is not inflated in this temperature
range and hence the boundaries cannot be drawn.

The lines for ZMW and ZLMC show a pronounced dip around
Teff ∼ 35 kK. This is because of the influence of the Fe-bump
coupled with inefficient convection, as previously mentioned. At
lower temperatures convection becomes more efficient and so

these lines move upwards to higher L . For lower metallicities
this dip is not clearly identified because the Fe-bump is either
weak, or absent.

In the MW and LMC grids, the models start to develop in-
flated envelopes even on the ZAMS, at masses above ∼ 80 M�
and ∼ 125 M� respectively. At lower metallicities this is also ex-
pected to happen, albeit at higher masses and hence at higher L ,
which is beyond the parameter space explored here.

5.4. Role of opacity in determining envelope structure

5.4.1. OPAL opacities

The Rosseland mean opacity κ is a function of density, temper-
ature and chemical composition such that for a given ρ and T ,
κ increases with an increase in metallicity. This is demonstrated
in Fig. 7 where the three opacity peaks caused by partial ionisa-
tion of iron, helium and hydrogen at their characteristic temper-
atures are visible. Note that the opacity does not vary linearly
with metallicity around the Fe bump temperature. The slope dκ

dZ
is higher for lower values of Z. In this section we investigate
how the strength of these opacity peaks determine the density
structure of the inflated envelope.

In Fig. 8, we take a look at the OPAL opacities around the Fe-
bump for the MW and LMC metallicities. As mentioned before,
in the inflated envelope the condition Γ ≈ 1 holds true. Let the
corresponding opacity be κEdd such that Γ = κEddLrad/4πcGm ≈
1. Consider two models with the same L/M but with metallic-
ities ZMW and ZLMC such that κEdd = 0.6 (dot-dashed line), and
assume that the convective efficiency is negligible. At the peak of
the Fe-bump marked by the vertical black line, the MW model
has to decrease its density by two orders of magnitude, from
10−8 g cm−3 to ≈ 10−10 g cm−3 whereas the LMC model only has
to go down to ∼ 10−9 g cm−3 to satisfy the constraint Γ = 1.
Therefore, the higher metallicity model will adjust its envelope
structure such that it has a lower envelope density. In practice
however, convection may mediate this effect (Sanyal et al. 2015).

5.4.2. Opacity in the inflated envelope

As mentioned before, the opacity bumps caused by the par-
tial ionisation zones at characteristic temperatures play a ma-
jor role in determining the structure of an inflated envelope. As
prototypical examples, we have selected three sequences with
Z = ZLMC and with initial masses of 60 M�, 70 M� and 100 M�.
The base of the inflated envelope in these models is located
around the characteristic Fe-bump temperature TFe ≈ 170 000
K. The maximum opacity within the Fe-bump (κmax

Fe ), i.e. be-
tween 5 < log(T/K) < 5.5, for the three sequences are shown
in the top panel of Fig. 9, for that part of the evolution where
the models are not helium-enriched at the surface, i.e. Ys < 0.3.
At any given value of ∆r/rcore , the higher mass model has a
lower κmax

Fe because it has higher luminosity, and hence needs to
decrease its opacity further to maintain κ ≈ κEdd.

The 60 M� sequence for example develops a larger inflated
envelope as it evolves, while increasing its L . The opacity
within the Fe-bump and κmax

Fe therefore decrease in the initial
phase because convection is relatively inefficient. As the model
evolves to cooler effective temperatures, the Fe-bump goes
deeper inside the star where densities are higher, and convec-
tion becomes efficient. Hence, κmax

Fe increases at Teff . 25 000 K.
In the case of the 70 M� sequence however, there is a drop in
κmax

Fe at Teff < 5000 K. In this phase of the evolution, a high mass-
loss rate (∼ 10−5 M� yr−1) causes a sharp increase in L . As a
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Fig. 5: An sHR diagram showing the metallicity dependence of inflation for the analysed models in our grid. The left Y-axis shows
the quantity log(L /L�) whereas the right Y-axis shows the corresponding values of log(Γe). The Γe values are computed assuming
a solar hydrogen abundance (completely ionised). Models marked with open black dots are not inflated whereas the coloured dots
represent models with inflated envelopes. The colour of the dots indicate the strength of inflation, log (∆r/rcore ). The black line is
the ZAMS, and the masses of some representative models (in units of M�) are indicated along it.

result, Lrad increases in the Fe-bump region. But the convective
efficiency does not increase enough (for details, see Appendix
A) such that it can prevent κFe from going down.

Models with a higher metallicity have a stronger Fe-bump,
the effect of which is seen in the bottom panel of Fig. 9.
While κmax

Fe for the 80 M� ZMW model with the highest Teff is
∼ 1.2 cm2 g−1, the same quantity for the 196 M� ZI Zw18 model
is ∼ 0.5 cm2 g−1. The slope of κmax

Fe versus ∆r/rcore is steeper
for the ZMW evolutionary sequences compared to the other se-

quences at lower metallicities because of the nature of the OPAL
opacities explained in Sec. 5.4.1.

5.5. Mass contained in the inflated envelopes

In this section we investigate the inflated envelope masses of our
models. In Fig. 10 we compare the 80 M� sequences in the MW,
LMC and SMC model grids and show that for a given Teff , the
higher metallicity model has a lower envelope mass. At rela-
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tively high effective temperatures (Teff > 45 000 K), i.e. when
the sequences start developing inflated envelopes for the first
time during their evolution, the envelope masses for all three se-
quences are similar but at as they evolve to lower Teff , the distinc-
tion becomes clear. For example, at Teff = 30 000 K the 80 M�
MW model has a distinctly smaller envelope mass than the cor-
responding LMC and SMC models, the difference in their core
radii being negligible. The LMC and the SMC models however
have comparable envelope masses over the whole Teff range.
This trend is likely related to the relative strength of the iron
opacity peaks for these metallicities (cf. Fig. 7).

For evolutionary sequences of a given metallicity, say, ZLMC,
the ones with higher L ’s have lower envelope masses (Menv),
as shown in the top panel of Fig. 11. For small inflation, i.e.
∆r/rcore < 0.1, the envelope mass in the three LMC sequences
is comparable but as ∆r/rcore increases, the sequences separate
out such that for a given ∆r/rcore , the 100 M� sequence with the
highest L has the lowest envelope mass and comparing with
Fig. 9, the lowest κmax

Fe . We note that for the 70 M� sequence
for example, the envelope mass varies by more than five or-
ders of magnitude over its main-sequence lifetime. The drop in
Menv near the end of the 70 M� sequence is because of its blue-

ward evolution in the HR diagram caused by strong mass-loss
(cf. Sec. 5.3).

In the bottom panel of Fig. 11, several representative se-
quences from the MW, LMC, SMC and I Zw18 grids are shown
that depicts how Menv changes with inflation. The higher metal-
licity models have lower envelope mass for a fixed ∆r/rcore .
For example, at ∆r/rcore = 1, the 60 M� LMC sequence has
Menv = 3 × 10−3 M� while the 60 M� SMC sequence has
Menv = 6 × 10−3 M�. At high inflation (∆r/rcore > 10), some
of the lines touch each other which may be related to the differ-
ent L/M-ratios of the models induced by mass-loss.

We investigate the envelope masses of all the inflated mod-
els in Fig. 12. The envelope mass spans several orders of mag-
nitude from ∼ 10−5 M� to ∼ 100 M�. In general we find that
Menv increases with a decrease in Teff for a given metallicity.
This increase in Menv is distinctly steeper at Teff . 8000 K (bot-
tom panel of Fig. 12) compared to that at Teff > 10 000 K. Below
10 000 K, the low-Z models have very massive envelopes (bot-
tom panel of Fig. 12). The models which contain the hydrogen
opacity bump show strong density inversions (Sanyal et al. 2015)
and because of the sharp rise in density the envelope mass in-
creases.
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At Teff > 10 000 K, there is a spread in Menv over a few or-
ders of magnitude, but at the lowest effective temperatures the
spread is much narrower. This is because the sequences which
evolve to effective temperatures below ∼ 8000 K do so for a nar-
row mass range. At higher initial masses strong mass-loss pre-
vents them from evolving to low surface temperatures, and at
lower initial masses inflation is not strong enough.

Gräfener et al. (2012) found from analytical estimates that
the inflated envelope mass scales as Menv ∼ R4/M. For constant
M and L, this translates to Menv ∼ T−8

eff
. The shape of this curve

(Fig. 12) is well-reproduced by our model grids at higher Teff ,
although at Teff < 8000 K the dependence is steeper than the an-
alytical estimate. We note that the envelope mass estimates of the
Minit = 1000 M� and the Minit = 500 M� models in the Pop III
grid (some of these are the black dots located above the dotted
line in Fig. 12) are particularly uncertain because they are sensi-
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of the evolution where Ys < 0.3 has been plotted. Bottom: Same
as in the top panel, but for four metallicities.

tive to the choice of the threshold value of β that marks the loca-
tion of rcore. Although these models have inflated envelopes, the
absence of an opacity peak complicates the process of identify-
ing rcore. A more detailed investigation of the envelope structures
of massive Pop III models is beyond the scope of the present pa-
per and will be pursued in a forthcoming study.

The envelope mass is determined both by the extent of infla-
tion (∆r/rcore) and the metallicity. As the metallicity increases,
the models with the most massive inflated envelopes (the cool
supergiants) are found at lower masses. This is a consequence
of the applied mass-loss rates. The wind mass-loss prescriptions
used in stellar evolution calculations are functions of luminos-
ity, temperature, mass, radius and chemical composition of the
model. With an increase in luminosity or mass, the wind mass
loss rates increase and the most massive stars in our MW and
LMC grids become helium-rich WR stars (Köhler et al. 2015)
and do not become cool enough to contain massive envelopes
(& 1 M�), as explained in the previous paragraph. At lower Z
this happens at higher masses. At Z = 0, models never become
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Fig. 12: Mass contained in the envelope of inflated models as
a function of their effective temperatures, for the five metal-
licities considered in this study. Only models with Ys < 0.3
are shown. The black dotted line has been drawn for guiding
the eye (see text). The bottom panel only shows models with
Menv > 10−2 M� and Teff < 30 000 K. The colour bar on the
right represents the fraction of the stellar mass contained in the
inflated envelope.

helium-rich at the surface unless they are very fast rotators (Yoon
et al. 2012).

6. Discussion and conclusions

We have performed a study of the envelope structures of core-
hydrogen burning massive star models computed with the fol-
lowing metallicities: ZMW , ZLMC , ZSMC , ZI Zw18 and ZPopIII . We
investigated the Eddington factors in their interior and its con-
nection to envelope inflation as a function of metallicity.

As expected we found that the Eddington limit is metallic-
ity dependent such that models with a higher Z reach Γ = 1 in
their interior at a lower mass. While a 30 M� MW model reaches
Γ ≈ 1 in its interior, it requires a 150 M� Pop III model to obtain
similar Eddington factors on the hot side of the HR diagram, i.e.,
at Teff > 10 000 K. For models with Teff below the hydrogen re-
combination temperature, metallicity has little effect, and super-
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Eddington layers can be found down to ∼ 5 M� models, although
in the post main-sequence phase (Langer et al. 2015; Grassitelli
et al. 2015a). Proximity to the Eddington limit leads to enve-
lope inflation in our models. We find inflated models at all the
metallicities investigated, albeit at different L/M-ratios (Fig. 6).
At a higher Z, envelope inflation starts at lower masses because
of larger opacities that help approach Γ ≈ 1. We reiterate that
envelope inflation might already start to develop before reach-
ing the Eddington limit because of the contribution from the gas
pressure gradient (cf. Sec. 4). Envelope inflation is responsible
for the redward bending of the ZAMS and the TAMS in the up-
per HR diagram (Fig. 2), that is also supported by observations
which show how the upper part of the Galactic H-R diagram
is well-populated by stars up to Teff ∼ 10 000 K (Castro et al.
2014). The extent of inflation might be used to infer the value of
αMLT for massive stars by comparing the main-sequence width of
the models against the observational TAMS (Castro et al. 2014;
Bestenlehner et al. 2014).

We find that the mass contained in the inflated envelopes can
range from ∼ 10−6 M� in the hot, luminous models to ∼ 100 M�
in the cool supergiant type models, across the range of metal-
licities investigated. While the observational signatures of these
envelopes needs to be explored further, the ones with high enve-
lope masses (Menv > 1 M�) seem to be promising candidates for
explaining the violent LBV eruptions, for e.g., the 1860 outburst
η Car, and other η Car analogs (Khan et al. 2015) or supernova
imposters. These models are near the Eddington limit and have
several solar masses in the loosely bound envelope. The details
of the instability responsible for the outburst still needs to be in-
vestigated. On the other hand, if the inflated envelopes are lost
episodically from the models with small envelope masses, it will
cause them to shrink to the non-inflated core radius but will not
be able to change the bolometric luminosity appreciably. These
models have been put forward to explain the S-Doradus type
variations by Gräfener et al. (2012) and Sanyal et al. (2015).

Moriya et al. (2015) proposed that an observational conse-
quence of a supernova progenitor with an inflated envelope is
that it extends the rise time of the supernova shock-breakout sig-
nal. This naturally explains the long (∼ 50 s) shock breakout X-
ray signal detected from the Type Ic SN 2008D (Soderberg et al.
2008) that is believed to have had a compact WR progenitor.

Luminous helium stars also show pronounced core-halo
structures and such models have been investigated in the past
(Ishii et al. 1999; Petrovic et al. 2006; Gräfener et al. 2012;
Tramper et al. 2015; Grassitelli et al. 2016a). The apparent mis-
match in radii between model atmosphere calculations and stel-
lar interior models of massive Galactic Wolf-Rayet stars has
been claimed to have been reconciled by envelope inflation
(Gräfener et al. 2012).

The inflated models are potentially unstable against the
so-called strange-mode instability (Gautschy & Glatzel 1990;
Glatzel & Kiriakidis 1993) because of low heat capacities
in their dilute envelopes (Glatzel 1994). Glatzel & Kiriakidis
(1993) reported that their solar metallicity models with
log(L /L�) & 4 are unstable to strange-mode oscillations. This
result coincides with the boundary between the inflated and non-
inflated models in our ZMW grid. Furthermore, these oscillations
might drive mass-loss from the star (Grott et al. 2005) though
Moriya & Langer (2015) and Grassitelli et al. (2016a) find mass-
loss to dampen the pulsations. The pulsational properties of our
models will be explored in detail in a forthcoming study.

A critical ingredient in the physics of envelope inflation is
convection, i.e. how convective energy transport is treated in
these regions. In the literature, stellar models computed with in-

creased convective efficiency show little or no envelope inflation
(Ekström et al. 2012; Yusof et al. 2013). A discussion of the con-
vective efficiencies in our ZLMC models can be found in Sec. 6 of
Sanyal et al. (2015). Jiang et al. (2015) performed 3-D radia-
tion hydrodynamics simulations of massive star envelopes and
concluded that for a 80 M� ZAMS model, standard MLT over-
estimates the convective flux in the inflated region around the
Fe-bump. In that case inflation in our 1-D models has been un-
derestimated. Jiang et al. (2015) also found turbulent velocities
that exceed the isothermal sound speed, driving shocks in the en-
velope and creating an inhomogeneous, clumpy medium which,
however, do not lead to a break-down of the inflation.

Grassitelli et al. (2016b) recently investigated the role of tur-
bulent pressure (Pturb) in stellar models computed with MW,
LMC and SMC metallicities, and found that its effect on stellar
structure is negligible regardless of the metallicity (Grassitelli
et al. 2015b). However, the ratio of Pturb to Ptotal in the stellar
envelopes of the hot stellar models decreases for lower metal-
licities at a given temperature and luminosity. This trend is con-
sistent with our results for inflation (Figs. 5 and 6). At higher
metallicities the density in the inflated envelope is lower which
implies inefficient convection and therefore a large and negative
entropy gradient. Hence the convective velocities and the Mach
number is also higher which leads to higher turbulent pressure.

Furthermore, Grassitelli et al. (2015b) found a correlation
between macroturbulent velocities in Galactic OB stars and the
fraction of turbulent pressure in the stellar envelope models.
Since the turbulent pressure contribution in the inflated enve-
lope becomes stronger in the upper HR diagram, high macro-
turbulent velocities (& 50 km s−1, Simón-Dı́az 2015; Grassitelli
et al. 2015b; Simón-Dı́az et al. 2016) might well be a signa-
ture of envelope inflation in hot, massive stars. The conditions in
the inflated envelope might be inferred via asteroseismic studies
(Aerts et al. 2014), especially if the connection between inef-
ficient convection and high-order non-radial pulsations is con-
firmed (Aerts et al. 2009; Grassitelli et al. 2015a,b).

It might be interesting to look at the fate of the inflated en-
velopes in close binaries, since ∼ 70% of all massive stars are
believed to interact during their lifetimes (Sana et al. 2012). The
loosely bound envelopes might help to stabilise mass-transfer in
close massive binary systems, especially in metal-rich systems
where this is expected to happen at lower masses. In close bina-
ries, the hydrogen envelope is usually lost from the mass donor
that bares its helium core and increases the L/M ratio. Helium
stars with solar metallicity start to develop inflated envelopes
from ∼ 10 M� (see Fig. 19 in Köhler et al. (2015)). Massive Type
Ib/c progenitors in binary systems are thus expected to have in-
flated envelopes (Yoon et al. 2010).
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acknowledges support from the Korea Astronomy and Space Science Institute
under the R&D program (Project No. 3348- 20160002) supervised by the
Ministry of Science, ICT and Future Planning.

References
Aerts, C., Puls, J., Godart, M., & Dupret, M.-A. 2009, A&A, 508, 409
Aerts, C., Simón-Dı́az, S., Groot, P. J., & Degroote, P. 2014, A&A, 569, A118
Alexander, D. R. & Ferguson, J. W. 1994, ApJ, 437, 879
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Fig. A.1: Maximum opacity in the temperature range 5 <
log(T/K) < 5.5 as a function of ∆r/rcore for that part of the evo-
lution where Ys < 0.3. The colour bar indicates the effective
temperature of the models.

Appendix A: Evolution of a 70 M� inflated LMC
model

We present the evolution of a typical inflated model, the 70 M�
LMC sequence, with respect to its inflated envelope and the
properties around the iron opacity bump. Only that part of the
evolution has been studied where the surface helium mass frac-
tion (Ys) is lower than 0.3.

The maximum value of the opacity around the Fe-bump
(κmax

Fe ; Fig. A.1) and the density at the location of κmax
Fe (Fig. A.2)

decrease initially as ∆r/rcore increases, because of an increase
in Lrad/M (Fig. A.3). The product of the quantities κmax

Fe and
Lrad/M, which is proportional to Γ, also increases initially up
to ∆r/rcore ≈ 0.1 (Fig. A.4). Thereafter it starts decreasing with
a decrease in Lrad/M. The Lrad/M decreases in this phase of the
evolution because of a rise in convective efficiency at this lo-
cation, shown in Fig. A.5. This is because as Teff of the model
keeps decreasing, the Fe-bump moves deeper inside the star
where density is higher and hence convection is relatively effi-
cient. When convection is capable of transporting the energy, the
radiative luminosity Lrad decreases and hence, the Eddington fac-
tor at this location (ΓFe) decreases. The inflated envelope keeps
on increasing in size in spite of ΓFe coming down to values as
low as 0.91.

At ∆r/rcore & 20, Lrad/M and ΓFe increase again while κmax
Fe

decreases. Since the star experiences high mass-loss rates at such
low effective temperatures, its L/M ratio increases sharply in this
phase (Fig. A.6), but the convective efficiency does not increase
as much. Hence to let the relatively high radiative flux to pass
through, the model reduces its opacity which pushes up the value
of Γ at that location. Note that at Teff below ∼ 8000 K the lo-
cation of Γmax is in the hydrogen recombination zone and not
within the Fe-bump.
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Fig. A.2: The variation of density at the position of κmax
Fe as a

function of ∆r/rcore , for that part of the evolution where Ys <
0.3. The colour bar indicates the effective temperature of the
models.
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Fig. A.3: The Lrad/M-ratio at the position of κmax
Fe as a function

of ∆r/rcore , for that part of the evolution where Ys < 0.3. The
colour bar indicates the effective temperature of the models.
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Fig. A.4: The value of the Eddington factor at the position of
κmax

Fe (denoted as ΓFe) as a function of ∆r/rcore , for that part of
the evolution where Ys < 0.3. The colour bar indicates the effec-
tive temperature of the models.
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Fig. A.5: The ratio of convective flux to the total flux at the po-
sition of κmax

Fe as a function of ∆r/rcore , for that part of the evo-
lution where Ys < 0.3. The colour bar indicates the effective
temperature of the models.
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Fig. A.6: Evolution of the quantity log(L /L�) as a function of
∆r/rcore for that part of the evolution where Ys < 0.3. The colour
bar indicates the effective temperature of the models.
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