731 research outputs found

    Central nervous system infection following vertical transmission of Coxsackievirus B4 in mice

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Coxsackie B viruses (CV-B) are important pathogens associated with several central nervous system (CNS) disorders. CV-B are mainly transmitted by the faecal-oral route, but there is also evidence for vertical transmission. The outcome of in utero CV-B infections on offspring's CNS is poorly explored. The aim of this study was to investigate vertical transmission of CV-B to the CNS. For this purpose, pregnant Swiss albino mice were intraperitoneally inoculated with CV-B4 E2 at gestational days 10G or 17G. Different CNS compartments were collected and analyzed for virus infection and histopathological changes. Using plaque assays, we demonstrated CV-B4 E2 vertical transmission to offspring's CNS. Viral RNA persisted in the CNS up to 60 days after birth, as evidenced by a sensitive semi-nested(sn) reverse transcripton(RT)-PCR method. This was despite infectious particles becoming undetectable at later time points. Persistence was associated with inflammatory lesions, lymphocyte infiltration and viral dsRNA detected by immunohistochemistry. Offspring born to dams mock- or virus-infected at day 17G were challenged by the same virus at day 21 after birth (-+ and ++ groups, respectively). Sn-RT-PCR and histology results compared between both ++ and -+ groups, show that in utero infection did not enhance CNS infection during challenge of the offspring with the same virus.This work was supported by Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, (LR99ES27), Tunisia, and Ministère de l’Education Nationale de la Recherche et de la Technologie, Université Lille 2 CHRU Lille (UPRES EA3610), France. Financial support for S.J.R has come from the European Commission 7th Framework Programme PEVNET [FP7/2007-2013] under grant agreement number 261441 and a Juvenile Diabetes Research Foundation (JDRF) Career Development Award (5-CDA-2014-221-A-N). Habib JMII was supported by grants from Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

    Enhanced flight performance by genetic manipulation of wing shape in Drosophila

    Get PDF
    Insect wing shapes are remarkably diverse and the combination of shape and kinematics determines both aerial capabilities and power requirements. However, the contribution of any specific morphological feature to performance is not known. Using targeted RNA interference to modify wing shape far beyond the natural variation found within the population of a single species, we show a direct effect on flight performance that can be explained by physical modelling of the novel wing geometry. Our data show that altering the expression of a single gene can significantly enhance aerial agility and that the Drosophila wing shape is not, therefore, optimized for certain flight performance characteristics that are known to be important. Our technique points in a new direction for experiments on the evolution of performance specialities in animals

    A practical approach to the sensitivity analysis for kinetic Monte Carlo simulation of heterogeneous catalysis

    Get PDF
    Lattice kinetic Monte Carlo simulations have become a vital tool for predictive quality atomistic understanding of complex surface chemical reaction kinetics over a wide range of reaction conditions. In order to expand their practical value in terms of giving guidelines for the atomic level design of catalytic systems, it is very desirable to readily evaluate a sensitivity analysis for a given model. The result of such a sensitivity analysis quantitatively expresses the dependency of the turnover frequency, being the main output variable, on the rate constants entering the model. In the past, the application of sensitivity analysis, such as degree of rate control, has been hampered by its exuberant computational effort required to accurately sample numerical derivatives of a property that is obtained from a stochastic simulation method. In this study, we present an efficient and robust three-stage approach that is capable of reliably evaluating the sensitivity measures for stiff microkinetic models as we demonstrate using the CO oxidation on RuO2(110) as a prototypical reaction. In the first step, we utilize the Fisher information matrix for filtering out elementary processes which only yield negligible sensitivity. Then we employ an estimator based on the linear response theory for calculating the sensitivity measure for non- critical conditions which covers the majority of cases. Finally, we adapt a method for sampling coupled finite differences for evaluating the sensitivity measure for lattice based models. This allows for an efficient evaluation even in critical regions near a second order phase transition that are hitherto difficult to control. The combined approach leads to significant computational savings over straightforward numerical derivatives and should aid in accelerating the nano-scale design of heterogeneous catalysts

    Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?

    Get PDF
    Migratory insects flying at high altitude at night often show a degree of common alignment, sometimes with quite small angular dispersions around the mean. The observed orientation directions are often close to the downwind direction and this would seemingly be adaptive in that large insects could add their self-propelled speed to the wind speed, thus maximising their displacement in a given time. There are increasing indications that high-altitude orientation may be maintained by some intrinsic property of the wind rather than by visual perception of relative ground movement. Therefore, we first examined whether migrating insects could deduce the mean wind direction from the turbulent fluctuations in temperature. Within the atmospheric boundary-layer, temperature records show characteristic ramp-cliff structures, and insects flying downwind would move through these ramps whilst those flying crosswind would not. However, analysis of vertical-looking radar data on the common orientations of nocturnally migrating insects in the UK produced no evidence that the migrants actually use temperature ramps as orientation cues. This suggests that insects rely on turbulent velocity and acceleration cues, and refocuses attention on how these can be detected, especially as small-scale turbulence is usually held to be directionally invariant (isotropic). In the second part of the paper we present a theoretical analysis and simulations showing that velocity fluctuations and accelerations felt by an insect are predicted to be anisotropic even when the small-scale turbulence (measured at a fixed point or along the trajectory of a fluid-particle) is isotropic. Our results thus provide further evidence that insects do indeed use turbulent velocity and acceleration cues as indicators of the mean wind direction

    Excess mortality from chronic physical disease in psychiatric patients - The forgotten problem

    Get PDF
    The article discusses various reports published within the issue, including one by David Lawrence and Joanne Pais on the mortality rate of mentally ill, another by Chris J. Busche and Richard Hodgson on cancer complexities, and on the incidence of chronic disorders among Canadians

    Orientation in high-flying migrant insects in relation to flows: mechanisms and strategies

    Get PDF
    High-flying insect migrants have been shown to display sophisticated flight orientations that can, for example, maximize distance travelled by exploiting tailwinds, and reduce drift from seasonally optimal directions. Here, we provide a comprehensive overview of the theoretical and empirical evidence for the mechanisms underlying the selection and maintenance of the observed flight headings, and the detection of wind direction and speed, for insects flying hundreds of metres above the ground. Different mechanisms may be used—visual perception of the apparent ground movement or mechanosensory cues maintained by intrinsic features of the wind—depending on circumstances (e.g. day or night migrations). In addition to putative turbulence-induced velocity, acceleration and temperature cues, we present a new mathematical analysis which shows that 'jerks' (the time-derivative of accelerations) can provide indicators of wind direction at altitude. The adaptive benefits of the different orientation strategies are briefly discussed, and we place these new findings for insects within a wider context by comparisons with the latest research on other flying and swimming organisms

    Triplet correlations in two-dimensional colloidal model liquids

    Full text link
    Three-body distribution functions in classical fluids have been theoretically investigated many times, but have never been measured directly. We present experimental three-point correlation functions that are computed from particle configurations measured by means of video-microscopy in two types of quasi-two-dimensional colloidal model fluids: a system of charged colloidal particles and a system of paramagnetic colloids. In the first system the particles interact via a Yukawa potential, in the second via a potential Γ/r3\Gamma/r^{3}. We find for both systems very similar results: on increasing the coupling between the particles one observes the gradual formation of a crystal-like local order due to triplet correlations, even though the system is still deep inside the fluid phase. These are mainly packing effects as is evident from the close resemblance between the results for the two systems having completely different pair-interaction potentials.Comment: many pages, 8 figures, contribution to the special issue in J.Phys. Cond. Mat. of the CECAM meeting in LYON ''Many-body....'

    Knowledge, attitude and practice of preventing spread of COVID-19 amongst orthopaedic surgeons and residents in a tertiary care hospital in Navi-Mumbai

    Get PDF
    Background: With on-going coronavirus pandemic, there is high incidence of COVID-19 occupational risk exposure among health care professionals. The aim of this study was to assess the knowledge, attitude and practice (KAP) amongst orthopaedic surgeons and residents regarding prevention of spread of COVID-19 at a tertiary care hospital.Methods: A cross-sectional, observational, web-based questionnaire study was conducted at orthopaedic department of a tertiary care hospital in Navi Mumbai. The study included orthopaedic surgeons and residents of either sex. A predesigned KAP questionnaire was used to assess the knowledge, attitude and practice regarding prevention of spread of COVID-19. The web-based questionnaire was circulated to eligible participants and the responses obtained were analysed.Results: Overall, the knowledge regarding hand hygiene, mask etiquette and COVID-19 diagnoses was high. Majority participants knew the proper technique of personal protective equipment (PPE), but few 25% and 35% lacked correct technique for donning and doffing of PPE respectively. Majority participants knew the indications and pre/post-operative protocols for orthopaedic surgeries in COVID-19. Around 40% only knew the type of pressure system used in the COVID-19 operation theatre (OT). Majority felt that mask, hand hygiene and PPE were essential kit for prevention. In practice, majority participants were taking drug prophylaxis and were adequately practicing mask/hand hygiene.Conclusions: Overall, KAP regarding prevention of spread of COVID-19 among orthopaedicians were adequate. Further formal preventive education on COVID-19 and structured hands-on experience workshops are necessary to advance the proper techniques of PPE handling
    corecore