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Lattice kinetic Monte Carlo simulations have become a vital tool for predictive quality atomistic
understanding of complex surface chemical reaction kinetics over a wide range of reaction conditions.
In order to expand their practical value in terms of giving guidelines for the atomic level design of
catalytic systems, it is very desirable to readily evaluate a sensitivity analysis for a given model.
The result of such a sensitivity analysis quantitatively expresses the dependency of the turnover
frequency, being the main output variable, on the rate constants entering the model. In the past,
the application of sensitivity analysis, such as degree of rate control, has been hampered by its
exuberant computational effort required to accurately sample numerical derivatives of a property that
is obtained from a stochastic simulation method. In this study, we present an efficient and robust three-
stage approach that is capable of reliably evaluating the sensitivity measures for stiff microkinetic
models as we demonstrate using the CO oxidation on RuO2(110) as a prototypical reaction. In the
first step, we utilize the Fisher information matrix for filtering out elementary processes which only
yield negligible sensitivity. Then we employ an estimator based on the linear response theory for
calculating the sensitivity measure for non-critical conditions which covers the majority of cases.
Finally, we adapt a method for sampling coupled finite differences for evaluating the sensitivity
measure for lattice based models. This allows for an efficient evaluation even in critical regions
near a second order phase transition that are hitherto difficult to control. The combined approach
leads to significant computational savings over straightforward numerical derivatives and should
aid in accelerating the nano-scale design of heterogeneous catalysts. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4974261]

I. INTRODUCTION

The last few years have seen tremendous progress in
modeling and analyzing heterogeneous catalysis using the
first-principles kinetic Monte Carlo (1p-kMC) approach.1

The appealing features of the approach are an elemen-
tary reaction mechanism (and corresponding rate constants),
which has been derived from predictive quality electronic
structure methods, and a subsequent solution of the result-
ing master equation by trajectory sampling. The last step
thereby only introduces a numerical (tunable) error, in con-
trast to the prevalent phenomenological kinetics where the
employed mean-field approximation might miss qualitative
features.2,3 However, kinetic Monte Carlo has some signif-
icant drawbacks. Besides the need to perform one reaction
event after the other and the concomitant large computational
costs, it is a huge effort to obtain parameter sensitivities,
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which are a measure for the rate-determining steps.4,5 The
evaluation is generally costly because sensitivities are not
straightforward expectation values such as coverages or rates.

During the last few years, a number of approaches for
the sensitivity analysis of kMC models have been developed,
mostly in the context of biological “reaction” networks and
the chemical master equation (in this context kMC is often
termed as stochastic simulation). These can be grouped into
two sets of approaches: (i) targeting at a reduction of the noise
in finite difference approximations6–9 and (ii) targeting a direct
estimation of sensitivities from the analysis of the simulated
trajectories.10–12 Albeit being improvements to the brute force
numerical differentiation, both groups have their limitations.
Direct estimation approaches allow obtaining all sensitivities
from the same set of trajectories (for ergodic stationary pro-
cesses from a single trajectory). On the other hand, the variance
of the corresponding estimators increases with increasing time
horizon.6,11 Especially for stiff problems, the latter point is a
major concern, as it severely affects the estimation of steady
state sensitivities, and there are quite some efforts on sampling
strategies for stationary sensitivities.11,12 This problem is not
as severe for the finite difference based approaches. These,
however, require additional simulations for every targeted
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sensitivity and generally a good guess for the difference
parameter.13

For lattice based models as they appear in heteroge-
neous catalysis, the methodology for sensitivity analysis is
not that mature and there are only a limited number of
studies addressing these high-dimensional, usually very stiff
problems.7,14–17

In this study, we device a three-stage strategy for the esti-
mation of stationary sensitivities, which is suitable for these
problems. We illustrate this strategy on the model for the CO
oxidation on RuO2(110) by Reuter,18 which is a popular fruit-
fly test problem.19,20 We revisit the reaction conditions studied
in Ref. 16 and can therefore concentrate on discussing the
peculiarities of the sensitivity estimation.

The basic idea of the approach is to first try to directly sam-
ple the sensitivities from a single trajectory and to only employ
the Coupled Finite Differences (CFDs) method6 for those sen-
sitivities, for which the direct sampling estimator shows a too
high variance. In practice, directly sampling all sensitivities
without prior knowledge might soon become unpractical. We
therefore first estimate bounds for the sensitivities using the
pathwise relative entropy method17 (Section III A). This also
allows to extract an expansion parameter, which is needed
for our direct sampling approach and represents the system’s
memory. So, we avoid its estimation in the direct sampling
step and can significantly reduce the sampling effort there.
Our direct sampling approach is based on a series expansion
of integrated linear response functions and is presented in
Section III B. As it turns out, the derived estimator is very
similar to that by Chen and Cao.10,21 However, our estima-
tor is based on a very different reasoning and avoids the use
of random time steps. In the end, these two steps allow to
significantly reduce the number of required Coupled Finite
Difference (CFD) estimates as presented in Section III C.

With the addition of the direct sampling, our approach
can be viewed as an extension of the approach put for-
ward by Arampatzis, Katsoulakis, and Pantazis in the context
of the chemical master equation.22 We find this additional
step to be beneficial, as, for most of the considered reaction
conditions, none or just very few CFD estimates remained
necessary.

II. BACKGROUND

Sensitivity analysis aims at identifying the most important
input parameters for a computational model. That is, if we
change an input parameter, how much does the model output
change? This information can then be used to identify those
parameters, which need to be more accurately determined in
order to arrive at a more reliable model. Or, we can employ it
to find out, which aspects of the underlying physical system
could be optimized in order to arrive at a better performance.
In the first order, such sensitivity information is provided by
partial derivatives of the model output with respect to the input
parameters.

In the microkinetic modelling of heterogeneous catalysis,
the central model outputs are the (stationary) reaction rates of
one or more target reactions. As the input parameters have an
atomistic meaning, sensitivity analysis is a tool to determine

which atomistic aspects of the catalyst control the macroscopic
reactivity.

In this section, we outline the background for perform-
ing sensitivity analysis for 1p-kMC models. We start with the
Markov jump process description of kinetics on lattices. We
then introduce sensitivity analysis in this context. After intro-
ducing the kinetic Monte Carlo methodology as a numerical
tool for simulating Markov jump processes, we detail our test
problem, the CO oxidation on RuO2(110).

A. Master equation

In chemical kinetics, the rare event dynamics, typical for
surface catalytic processes, is exploited by considering a time
evolution that is coarse-grained to the discrete elementary pro-
cesses of the reaction mechanism. In this description, a state
j of the system corresponds to a meta-stable state or domain
in the microscopic evolution. That is, the time which is spent
between two transitions between these domains is large com-
pared to the time spent for one transition. We can then safely
assume that in the time between such rare events the system
loses all memories of the past by thermal fluctuations and the
sequence of states can then be regarded as a Markov jump pro-
cess. The probabilities Pi of finding the system in the state i
then obey a master equation,23,24

d
dt

P(t) = ΓP(t), (1)

where P(t) = (P1(t), P2(t), . . .)T is the vector of the probabil-
ities. The stochastic generator Γ has the matrix elements,

Γij = wij − δij

∑
l

wli, (2)

where wij is the transition rate for the event j → i, with
wii = 0. The (negative) diagonal element wacc.

i =
∑
l
wli is called

the accumulated rate (for the state i), which simply is the rate
for escaping the state i. In the following, we consider processes,
which relax to a single stationary distribution Pstat.. Further,
we assume that the transition probability PkMC(j |i) = wji/w

acc.
i

defines a discrete time Markov chain, which also relaxes to
a single stationary distribution. For these prerequisites, we
can prove the convergence of the series expansion emp-
loyed in Sections III A and III B (for details see the
supplementary material).

In the context of catalysis, the state i can be regarded
as an integer vector, which carries the information that which
species is adsorbed on which adsorption site at the surface. Due
to symmetries, like translational invariance, and the locality of
processes, we can group the allowed events i → j (wij > 0)
into different subsets, each assigned to one elementary step
(or reaction). This decomposition can be made a partition of
the set of all allowed events, i.e., every allowed event is in a
single set α. For convenience, we impose that all processes
j → i belonging to the same subset α have the same value for
their transition rate. Thus for each reaction α, we can define
the partial transition matrix wαij with the elements

wαij =

{
kα, if j → i ∈ α,
0, otherwise,

(3)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-029704
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where kα will be called the rate constant (RC) of the reaction α
in the following. With wαij we can define the (partial) generator
Γα as

Γ
α
ij = w

α
ij − δij

∑
l

wαli . (4)

Summing over all (partial) generators, we arrive at the (total)
generator Γ,

Γij =

Nreac.∑
α=1

Γ
α
ij , (5)

where N reac. is the total number of reactions we have for our
system. As for the total generator, the absolutes of diagonal
elements of the partial generator are the partial accumulated
rates wα,acc.

i =
∑
l
wαli .

B. Sensitivity analysis

The central objective of kinetics in the heterogeneous
catalysis is average, stationary reaction rates 〈R〉, also called
turnover frequencies (TOFs), if suitably normalized. In the
case that there are multiple elementary reactions contributing
to the targeted overall reaction, 〈R〉 is the superposition of the
corresponding reaction rates 〈Rα〉 of the elementary reactions,

〈R〉 =
Nreac.∑
α

Tα〈Rα〉, with 〈Rα〉 =
∑

i

wα, acc.
i Pi,stat., (6)

where Pi ,stat. is the stationary probability distribution and Tα

is a constant which only depends on the stoichiometry of
the reaction network. For the below discussed CO oxida-
tion on RuO2(110), there are four reactions which yield one
CO2 molecule per event. In this case, Tα for the CO oxida-
tion rate is one for each of these four and zero for all other
reactions.

We require a unique stationary probability distribution
Pstat. and the reaction rate 〈R〉 is therefore a function of the
rate constants. As the RCs measure how fast the elementary
reactions proceed, finding out how 〈R〉 reacts on little changes
in the RCs can be used to identify the most important steps,
i.e., those steps which need to be accelerated or slowed down
to achieve a higher reaction rate. In chemical kinetics, a useful
measure for such sensitivity analysis is16

Xα :=
kα

〈R〉

(
∂〈R〉({kβ })

∂kα

)
kφ,α

, (7)

i.e., the relative change of 〈R〉 over the relative change of
the corresponding RC, while all other RCs are kept constant.
We will term this sensitivity index Degree of Rate Sensitivity
(DRS).

The DRS can be regarded as the generalized reaction
order, which becomes clear for the case that all DRS do not
change for a range of values for the RCs. In this range, the
reaction rate obeys the relation

〈R〉 = r0

Nreac.∏
α

(kα)Xα

, (8)

where r0 is independent of the RCs. For elementary steps
involving gas phase species A like adsorption or Eley-Rideal

reactions, we expect rate expressions of the form kα ∝ pA with
the partial pressure pA. We then arrive at a power law kinetics

〈R〉 = r̃0

∏
A

(pA)νA , with νA =
∑
α∈RA

Xα, (9)

where RA is the set of elementary steps involving the gas phase
species A and r̃0 is independent of the partial pressures. Thus
the DRS connects macroscopic reaction orders with micro-
scopic elementary steps and rate constants. Usually, we employ
the rate expressions kα = f α(T , {pA}) exp(−∆Eα/kBT ), where
kB is the Boltzmann constant, T is the temperature, and∆Eα is
the activation barrier for the reaction. Using sensitivity analy-
sis, we can find a simple connection between the elementary
barriers and the macroscopic apparent activation barrier Eapp.

by16

Eapp. := −

(
∂〈R〉(T , {pA})

∂ (kBT )−1

)
pA

≈

Nreac.∑
α

Xα
∆Eα. (10)

For brevity, we have only provided the dominant contribution
and neglected the (typically weak) temperature dependence of
the pre-exponential factor.

To simplify the latter discussion, we decompose the DRS,

ki

〈R〉

(
∂〈R〉({kβ })

∂kα

)
kβ,α
= Xα

0 + Xα
1 (11)

using the product rule. Here Xα
0 = Tα〈Rα〉/〈R〉, which is the

relative contribution to the total rate of the reaction α. As this
is a stationary expectation, it is straightforward to obtain from
sampling. Therefore we will concentrate on the second term,

Xα
1 =

ki

〈R〉

∑
i

Ri
∂Pi,stat.

∂kα
(12)

in the further discussion. Intuitively, Xα
1 can be regarded as the

average effect on the creation and annihilation of states i, which
allow for those reactions contributing to the overall reactivity.
As Xα

1 originates from the kα-dependence of the probability
distribution, this cannot be expressed as a stationary expec-
tation, except for the case when the stationary distribution is
known as a function of the RCs. For obtaining Xα

1 , we can omit
any explicit dependence of R on variations of the RCs.

The DRS is strongly related to the Campbell’s Degree of
Rate Control (DRC),4

Xξ
DRC =

kξ+
〈R〉

*
,

∂〈R〉({kφ+ }, {K
φ })

∂kξ+

+
-kφ,ξ+ ,Kφ

, (13)

where ξ denotes a pair of forward and backward reaction and
kξ+ and Kξ are the corresponding RCs of the forward reaction
and the equilibrium constant, respectively. The only difference
between DRC and DRS is what is kept constant during differ-
entiation, all other RCs (DRS) or all other forward RCs and
the equilibrium constants (DRC). In a previous publication, we
therefore termed both the degree of rate control.16 To clarify
the presentation, we have introduced a new name for the less
common sensitivity measure (7). Applying the chain rule, we
arrive at a simple relation between DRS Xα and DRC Xξ

DRC,16

Xξ
DRC = Xξ+ + Xξ− , (14)
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where ξ+ identifies the forward reaction and ξ− the backward
reaction. The DRC Xξ

DRC is therefore easily obtained by adding
the DRSs for the forward and the reverse reactions.

By construction, the DRC Xξ
Camp. is zero for reactions

which are in equilibrium. Identifying rate-determining steps
by large |Xξ

DRC | agrees then with chemical intuition, which
would not assign the property “rate-determining” to steps
which are in equilibrium. Also the DRC has the nice micro-
scopic interpretation of the effect of a change in the height
of the barrier separating two metastable states on a poten-
tial energy surface. This microscopic interpretation in terms
of barriers and the thermodynamic consistency are absent in
definition 7 for Xα. On the other hand, there are many situ-
ations, which cannot be properly addressed using the DRC.
If we change the partial pressures of the gas phase species
above the catalyst, adsorption RCs are affected but not des-
orption RCs and thus the equilibrium constants change. If
we modify the catalyst or we exchange the electronic struc-
ture method for estimating the RCs, we do not only change
the barrier height but also the equilibrium properties. As long
these changes do affect the mechanism, they are reflected in
the Markov model by the values of the RCs and the DRSs
Xα provide the sensitivity to all rate constants. Using the
chain rule, the DRS therefore allows to calculate any sen-
sitivity measure, which is adapted to the problem at hand.
In this context, we have already provided explicit formulas
for three special cases: (i) pressure variation (reaction orders,
Eq. (8)), (ii) temperature variation (apparent activation bar-
rier, Eq. (10)) and (iii) barrier height variation (DRC, Eq.
(14)). So, the DRS is much more general allowing to calcu-
late the DRC as a special case. Especially, the kinetic key
properties, reaction order 8 and apparent activation energy
10 cannot be extracted from the DRC, as they correspond to
changes in the equilibrium constants. Despite its generality,
the DRS also provides a decomposition of the DRC into con-
tributions from the forward and the backward RCs by Eq. (14).
This decomposition often allows to explain why a step is rate
determining and to identify additional key aspects controlling
reactivity.

Because of its generality, we will concentrate on the DRS
for most of the manuscript, also for the reason of shorter equa-
tions and a more comprehensive and compact presentation of
the theoretical background. However, most information can
probably be extracted using both, the DRC for the identifica-
tion of the rate-determining steps and the DRS to gain a deeper
insight into the details of the mechanism. We will therefore
come back to the DRC in Section V when we discuss our final
results in terms of surface coverage and barriers. By Equation
(14), this comes at essentially zero computational costs.

C. Kinetic Monte Carlo

In most cases, the master equation is too high-dimensional
for a direct numerical solution. Instead, one will simulate the
underlying Markov process and obtain estimates of the tar-
geted expectations by averaging over trajectories. For this and
all our implementations, we use the kmos code package,25

which we have developed during the last years for the lattice
based kinetic Monte Carlo.

We employ the so-called variable-step size method,24

which can be described as follows:

1. Initialize the state i and the time t.
2. Increase the time t → t + δt with δt = (wacc.

i )−1 log ξ,
where ξ is a uniformly distributed random variable on
(0,1].

3. Choose the event i→ j with the probability PkMC(j |i)
= wji/w

acc.
i .

4. Set i = j and go to 1 or stop if the termination criterion is
reached.

The method essentially simulates a classical discrete time
Markov chain with the transition probability matrix PkMC and
simply adjusts the time steps between the jumps to arrive at a
statistically proper continuous time Markov jump process.

Focusing on stationary reaction rates, we can most con-
veniently obtain estimates by time averaging. That is, we will
approximate 〈Rα〉, after a sufficiently long relaxation, with

〈Rα〉 ≈
1
τN

N∑
n=0

wα,acc.
in

δtn ≈
1
tN

N∑
n=0

wα,acc.
in
∆tn, (15)

where (i1, . . . , iN ) is the sequence of states generated by the
kMC simulation and (δt1, . . . , tN ) are the corresponding time

steps with τN =
N∑

n=0
δtn. For the second approximation, we

have pre-averaged the time steps, i.e., ∆tn = (wacc.
in

)−1 and

tN =
N∑

n=0
∆tn. This is a common approximation11,12 to reduce

the noise caused by the random time steps and the introduced
bias vanishes for large enough N.

In practice, we will employ a number independent sample
trajectories to estimate an expectation 〈A〉 ≈ Ā = K−1 ∑

k
Ak

and the standard deviation of our estimateσ(Ā)2
≈ (K2 − K)

−1∑
k

(Ak − Ā)2. Here K is the number of samples and Ak are

time averages. We generate these samples by first simulating
one trajectory. We then perform a number of kMC steps for
decorrelation and then use the last configuration as the initial
condition for the next trajectory. We repeat this until we have
reached the total number K of samples.

D. CO oxidation on RuO2(110)

Throughout this article, we consider the realistic first-
principles kinetic Monte Carlo (1p-kMC) model for the
CO oxidation on RuO2(110) by Reuter.18 It is one of the
most thoroughly tested and understood 1p-kMC models (e.g.,
Refs. 3, 19, and 26) for which we have already performed a
sensitivity analysis.16 This makes it well suited for testing our
scheme and we can concentrate on discussing the peculiarities
of the employed sampling approaches.

In detail, the model considers two kinds of adsorption
sites, the so-called bridge (br) and coordinatively un-saturated
(cus) sites. These are arranged on a square lattice with alternat-
ing rows. Oxygen and CO can adsorb on both kinds of sites,
where oxygen adsorbs dissociatively while CO stays intact
after adsorption. CO2 does not bind to the surface and the
sites can be in three different states: (i) empty,(ii) CO occu-
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pied, and (iii) atomic oxygen occupied. Altogether, the model
comprises 22 elementary reaction steps, which are single
site CO ad/desorptions, nearest-neighbors O2 ad/desorptions,
adsorbed CO/O nearest-neighbor diffusion, and formation
of gaseous CO2 by Langmuir-Hinshelwood reactions of co-
adsorbed CO and O. The corresponding RCs have been
obtained from the density functional theory using expressions
based on the harmonic transition state theory (for details see
Refs. 18 and 23). By these expressions, the rate constants
depend on the temperature T as well as on the CO and O2

partial pressures pCO and pO2 , respectively. We will consider
the reaction conditions of T = 600 K, pO2 = 1 bar, and vary-
ing pCO ∈ [0.05, 50] bars, which result in the rate constants
given in Table I. These are the reaction conditions, which we
have employed in our previous studies3,16 and which therefore
allow for direct comparison.

The TOF for the CO oxidation in the considered range
of reaction conditions is shown in Fig. 1, i.e., the sum of the
rates for the four CO2 formation reactions normalized to the
size of a surface unit cell. The data were obtained employ-
ing a lattice with 20 × 20 surface unit cells and by averaging
over 109 kMC steps, after an initial relaxation of 108 steps.
These are save settings, as we observe that stationary opera-
tion is usually reached after 106 steps. We find three regimes,
which are characterized by their dominant site occupations:
(i) at low pCO, the surface is almost fully oxygen covered and
the reactivity is very low (white background), (ii) the TOF is

TABLE I. Elementary reaction steps and corresponding rate constants at the
considered reaction conditions of T = 600 K, pO2 = 1 bar, and varying pCO ∈

[0.05, 50] bars. An index cus or br indicates that the molecule is adsorbed at a
cus- or br-site, respectively.

Process ∆Eα (eV) Rate constant (s�1)

Adsorption
CO → COcus 0.0 2 × 108 × pCO(bars)
CO → CObr 0.0 2 × 108 × pCO(bars)
O2 → Ocus + Ocus 0.0 9.7 × 107

O2 → Obr + Obr 0.0 9.7 × 107

O2 → Obr + Ocus 0.0 9.7 × 107

Desorption
COcus → CO 1.3 9.2 × 106

CObr → CO 1.6 2.8 × 104

Ocus + Ocus → O2 2.0 2.8 × 101

Obr + Obr → O2 4.6 4.1 × 10−21

Obr + Ocus → O2 3.3 3.4 × 10−10

Diffusion
COcus → COcus 1.7 6.6 × 10−2

CObr → CObr 0.6 1.1 × 108

COcus → CObr 1.3 1.5 × 102

CObr → COcus 1.6 0.5
Ocus → Ocus 1.6 0.5
Obr → Obr 0.7 1.6 × 107

Ocus → Obr 1.0 4.9 × 104

Obr → Ocus 2.3 6.0 × 10−7

CO2 formation
COcus + Ocus → CO2 0.9 1.7 × 105

CObr + Obr → CO2 1.5 1.6
COcus + Obr → CO2 1.2 5.2 × 102

Ocus + CObr → CO2 0.8 1.2 × 106

FIG. 1. Turnover frequency for the CO oxidation on RuO2(110) for T
= 600 K, pO2 = 1 bar, and varying pCO. At low pCO, the surface is oxy-
gen covered and the TOF is low (white background). With increasing partial
pressure pCO, the CO coverage increases as well. The TOF increases having
its maximum, when both CO and oxygen are present in appreciable amounts
(gray background). At high pCO, the surface becomes CO-covered and the
TOF decreases again (blue background).

the highest for medium pCO, where both CO and O occupy
the surface sites in roughly the same amounts (grey back-
ground), and (iii) the TOF decreases for higher pCO as now the
surface becomes CO poisoned (blue background). The
reaction rates for all elementary steps can be found in the
supplementary material.

III. METHODS

We now turn to the problem of estimating the DRS from
kinetic Monte Carlo simulations. As written above, we propose
a three-step strategy for that purpose.

In the first step, we estimate bounds for the DRS using
the relative entropy method as presented in Section III A. The
ingredients to these bounds are the pathwise Fisher informa-
tion metric and the time-integrated auto-correlation function
(TAC) of the reaction rate. Especially, the latter is not triv-
ial to estimate and, in Section III A 1, we present a sam-
pling strategy based on a series expansion of a generalized
inverse.

In the second step, we try to directly sample all DRSs from
a single trajectory. For this, we employ our linear response
theory based estimator, which we present in Section III B. The
bounds from the first step help here to reduce the sampling
overhead because we can skip those DRSs whose bounds are
close to zero. We further utilize a numerical parameter, which
we need to adjust during the determination of the TAC.

The direct estimator might suffer from a too high vari-
ance for some sensitivities and we would need unrealistically
long trajectories to achieve a satisfactory accuracy. In the third
step, we therefore determine these sensitivities using Coupled
Finite Differences (CFDs),6 which might provide the desired
variance with less sampling effort. However, we will need an
extra kMC simulation for each DRS and if we can sufficiently
determine at least some DRS from direct sampling, we will
save computational costs. We outline how to implement CFDs
for lattice problems in Section III C.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-029704
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A. Bounds for the degree of rate sensitivity
from the relative entropy method

As written above, this step’s purpose is to reduce the
computational costs at the later stages of the scheme. For
this, we estimate upper bounds for all Xα

1 and we can save
CPU time by discarding those Xα

1 which are close to zero.
From this estimation process, we also obtain reasonable trun-
cation limits for the next step in Section III B, the direct
sampling of Xα

1 based on the time-integrated linear response
function.

For the bound, we will follow an approach put forward by
Arampatzis, Katsoulakis, and Pantazis.17,22 For the DRS, their
bound for a general parametric dependence specializes to

|Xα
1 | ≤

1
〈R〉

√
cRIαα =: Bα, (16)

where Iαα are the diagonal elements of the pathwise Fisher
Information Metric (FIM), and cR is the time-integrated auto-
correlation of the reaction rate. When the transition matrices
w
β
ij (θ) arbitrarily depend on a parameter vector θ, the Fisher

information metric is given by

I =
∑
j→i

Pj,stat.wij∇θ log wij∇θ log wij, (17)

where the sum runs over all allowed events j → i (wij , 0).
Using Eq. (3) and the logarithms of the rate constants as
parameters, the above equation reduces to the reaction rates

Iαβ = δαβ〈R
α〉. (18)

So, using bound (16) will simply sort out those reactions which
do not happen frequently enough. In the stationary case, the
time-integrated auto-correlation (TAC) is

cR = 2

∞∫
0

〈δR(t)δR〉dt

=
∑

ij

2

∞∫
0

δRi(e
Γt)ijδRjPj,stat.dt, (19)

where δRi = Ri − 〈R〉.
The bound (16) can be regarded as conservative sensi-

tivity measures, i.e., only using the bounds we will definitely
not miss an important elementary step. Even only considering
the Fisher Information Metric (FIM) allows for a sensitivity
analysis,27 albeit with a different objective. The FIM mea-
sures the impact of a small change in the parameters on the
whole stochastic process, i.e., the leading order of the relative
entropy between the original and the perturbed processes. This
allows for a global picture, but if one is interested in a partic-
ular average, the FIM based findings might be misleading. For
example, we consider the case with two types of sites a and b,
which are completely decoupled. Further, we want to assume
that the reaction only takes place on sites of type a, but the pro-
cesses on the site b are much faster. By Eq. (18), the processes
on b-sites will have the largest FIM Iαα and therefore the largest
Bα. However, from the construction of our example, we know
that these processes can have no impact on the average reaction
rate.

1. An estimator for the time-integrated auto-correlation
based on generalized inverses

With the definitions vi = δRi and ui = δRiPi,stat., the TAC
can be written as

cR = 2(v ,

∞∫
0

eΓtdtu) = −2(v , Γ#u)

= 2(v , D
∞∑

l=0

(1 − ΓD)lu), (20)

where (·, ·) is the usual standard scalar product andΓ# is a gener-
alized inverse. The first line results from u and v being perpen-
dicular to the left (g0 = (1, 1, . . . , 1)T ), respectively, the right
eigenvector (g0

i = Pi,stat.) to the eigenvalue zero. For the second
line, we have employed the Neumann series for Γ#, where D is
a suitable initial guess for Γ#. We choose

Dij =
1

wacc.
i

δij = ∆tiδij, (21)

which ensures the (linear) convergence of the series for the
considered class of Markov processes (see the supplementary
material for details). We can therefore truncate the series at
some finite M (the truncation limit) and arrive at

cR ≈ 2(v , D
M∑

n=0

(1 − ΓD)nu)

= 2
∑

ij

δRi∆ti*
,

M∑
n=0

(PkMC)n+
-ij

δRjPj,stat., (22)

where we have used (1 − ΓD)ij = PkMC(i|j). Generally, a good
choice of M is unknown and needs to be determined by testing
the convergence.

As (PkMC)n
ij is the probability to be in the state i after n

kMC steps starting in the state j, the TAC can be written as an
expected value of a discrete time Markov chain, with the initial
distribution Pi0,stat.,

cR ≈ 2
∑

i0,i1...iM

[
*
,

M∑
n=0

δRin∆tinδRi0
+
-

× PkMC(iM |iM−1) . . . PkMC(i1 |i0)Pi0,stat.

]
. (23)

We could thus run a kMC trajectory to obtain samples i0 with
their corresponding weights (∝ ∆ti0 ) and simulating a single
discrete time Markov chain for each initial i0. Fortunately, the
latter is not necessary as the next M states in a kMC trajectory
are generated according to PkMC. We can save the time and just
employ these. Putting this together with Eq. (15), we arrive at

cR ≈
2
T

N∑
l=M

δRil∆tl
M∑

n=0

δRil−n∆tl−n, (24)

where T =
N−M∑
l=0
∆tl.

An equation as (24) could also be motivated by first repre-
senting δR(t) by a suitable trajectory averaging and then per-
forming the (truncated) time integration. Choosing M large
enough and a subsequent time step averaging results in the same
formulas as Eq. (23). This allows us to interpret M as a measure

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-029704
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of the autocorrelation time in a number of kMC steps. Mul-
tiplying it with the average time step then leads to a physical
autocorrelation time.

When implementing Eq. (24), the need to sum over the
last M steps could become the computational burden, when
M becomes large. A straightforward idea to lift this would be
to employ a circular array which always stores δR∆t of the
last M steps and to introduce a variable S for the sum, which
is updated in every step l according to the rule S → S −
δRil−M∆tl−M + δRil∆tl. Then the element in the circular array
containingδRil−M∆tl−M isoverwrittenbyδRil∆tl.Thisallowsan
update in O(1) CPU-time and has O(M) storage requirement.
However, for stiff problems as the CO oxidation on RuO2(110),
the time steps∆tl easily vary by some orders of magnitude (and
M can become large). We then end up in adding and subtracting
small numbers from the variable S, which might quickly cause
inaccuracies due to the finite machine precision. We therefore
complement the circular array with a binary tree. The leaves
then carry the elements of the circular array and an interior
node stores the sum of the values stored at its children. The
root node then carries the desired sum over all leaves. Choos-
ing M as a power of two allows to employ a so-called perfect
binary tree, i.e., every interior node has exactly two children
and all leaves have the same depth.28 This data structure and
the corresponding operations can efficiently be implemented
in a single array, which is of more relevance in kMC simu-
lations than maximum flexibility in choosing M. If we now
update the leaf carrying δRil−M∆tl−M , only the ancestor nodes
need to be updated which scales O(log2 M). Being a little less
efficient than the straightforward circular array, we, however,
have the advantage, that at no point we need to subtract two
numbers.

The supplementary material provides pseudocode for the
sampling of the TAC during the kMC simulation.

B. Linear response theory based direct sampling
of the DRS

The second step is the direct sampling of the sensitivities
using our estimator based on the linear response theory. The lin-
ear response theory deals with small, in general time-dependent
perturbations of the generator Γ in the master equation.29 For
our purposes, the perturbations result from changing the rate
constants, i.e., we multiply the RC kα with a factor (1+ εα(t)).
The perturbed generator is then given by

ΓR(t) = Γ + Γαεα(t). (25)

As we are interested in the stationary processes, we can restrict
to the case, when the system initially was in the steady state for
εα(t) = 0, i.e., Pj(t = 0) = Pj ,stat.. In the linear response regime,
when εα(t) is small, the time dependent deviation δ〈R〉(t) from
the stationary expectation obeys29

〈R〉(t) − 〈R〉stat. =

t∫
0

χα(t − s)εα(s)ds, (26)

where we omitted an explicit dependence of R on εα(t) as we
target at an estimate for Xα

1 . The Linear Response Function
(LRF) χα(t) in Eq. (26) is given by

χα(t) =
∑

ij

δRi(t)Γ
α
ij Pj,stat.

=
∑
ijk

δRi(e
Γt)ijΓ

α
ikPk,stat., (27)

and can be obtained from the properties of the stationary initial
state and the unperturbed process. If εα(t) = const. for t > 0,
we expect that 〈R〉(t) converges to a new steady state and, as we
are in the linear regime with respect to the perturbation εα, we
have

Xα
1 =

1
〈R〉

∞∫
0

χα(s)ds =
(
R̃, Γ#

Γ
αPstat.

)
, (28)

where R̃i = δRi/〈R〉 and Γ# is the same generalized inverse as
in Eq. (20) because we have the same orthogonality properties
for ΓαPstat. as for δRiPi,stat. (compare Section III A 1 and the
supplementary material).

1. Estimator for Xα1
As in Section III A 1, we expand Γ# into a series and arrive

at

Xα
1 ≈ X̄α

1 =
*
,
R̃, D

M∑
n=0

(PkMC)n
Γ
αPstat.+

-
, (29)

withDasdefinedbyEq. (21).Weemploy thesameseriesexpan-
sion in the above equation as for the estimation of the TAC in
Section III A 1. The truncation limit M should therefore be the
same for both and we can employ a reasonable choice obtained
in the first step also here.

Next, we decompose Γα into its diagonal part Γα,D
ij

= −δij
∑
l
wαlj and the off-diagonal partial transition matrix and

make the decomposition X̄α
1 = Xα

D + Xα
W , where

Xα
W ≈

∑
i−1,i0,...iM

[
*
,

M∑
n=0

R̃in∆tin Oα
i0,i−1

+
-

× PkMC(iM |iM−1) . . . PkMC(i0 |i−1)Pi−1,stat.

]
. (30)

Here, we have used that PkMC(i|j) = 0 ⇒ wαij = 0 and
introduced the rescaled partial transition matrix Oα defined by

wαij = PkMC(i| j)Oα
ij , i.e., Oα

ij =

{
wacc.,

j if j → i ∈ α
0, else

. (31)

Note, that in Eq. (30) Xα
W is an expected value over a discrete

time Markov chain of length M + 2 instead of M + 1 as in
Eq. (23). The contribution from the diagonal part of Γα can be
written as

Xα
D ≈

∑
i−1i0,...iM


*
,

M∑
n=−1

R̃in∆tinw
α,acc.
i−1

+
-

× PkMC(iM |iM−1) . . . PkMC(i0 |i−1)Pi−1,stat.


, (32)

where we have added a term
(
R̃, D(1 + ΓD)M+1Γα,DPstat.

)
, so

that the Markov chains in Eqs. (30) and (32) have the same
length. We can do so as this term converges to zero for large
enough M (see the supplementary material).

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-029704
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Putting Equations (30) and (32) together and employing
the same argumentation as in Section III A 1, we arrive at the
estimator

Xα
1 ≈

1
T

N∑
n=M+1

[
− R̃inw

α,acc.
in
∆t2

n

+ R̃in∆tn
M+1∑
l=1

(Oα
in−l+1in−l

− wα,acc.
in−l

)∆tn−l

]
, (33)

where T =
N−M−1∑

l=0
∆tl. We term this way to estimate Xα

1 Inte-

grated Response Function (IRF) approach. Although being
based on a very different derivation, the IRF estimator (33) is
verysimilar to theestimatorpresented inRefs.10and21,except
that it employs deterministic∆t instead of random time steps δt.
These deterministic∆t might help to improve the performance,
as it is the case for log-likelihood estimators.11,12 However,
the motivation from generalized inverses and series expansion
might open ways to improve its performance, e.g., by choosing
a different initial guess D.

The above formula (33) explains why we have added the
extra term in Eq. (32): Both Oα

in+1in
and wα,acc.

in
can now be cal-

culated at the kMC step n. The accumulated rate needs to be
calculated anyways and for Oα

in+1in
we just need to know which

type of reaction will be executed next. We can therefore employ
the same binary tree for summation as for the TAC sampling
with negligible overhead. The leaves will now carry the values
(Oα

in+1in
− wα,acc.

in
)∆tn instead of δRin∆tn.

Pseudocode for the sampling of the IRF can be found in the
supplementary material.

C. Coupled finite differences

The direct sampling of the sensitivities is not always suc-
cessful. For some DRSs, we might still have too large sam-
pling errors. We estimate these DRSs, which are not sufficiently
accurate, using Finite Difference Approximations (FDAs). In
particular, we employ central finite differences,(
∂〈R〉({kβ })
∂ log kα

)
kβ,α
≈
〈R〉((1 + h)kα) − 〈R〉((1 − h)kα)

2h
, (34)

which are second order accurate in the difference parameter h.
Straightforward FDA uses two independent kMC simulations
toestimate 〈R〉(. . . (1+h)kα . . .) and 〈R〉(. . . (1−h)kα . . .). Ash
approaches zero, the difference between 〈R〉(. . . (1 + h)kα . . .)
and 〈R〉(. . . (1 − h)kα . . .) will become smaller than the sam-
pling errors in the statistically independent estimates, and the
FDA might thereby carry a huge error. To overcome this to a
certain degree, the two simulations could be coupled such that
the fluctuations of the two estimates point in the same direc-
tion and the estimated difference has a smaller sampling error
than the two estimates for 〈R〉. The simplest of such couplings
is the common random number approach,30 where we would
employ the same set of pseudo random numbers for both kMC
simulations. This approach is easy to implement, but seems not
to provide significant improvements for lattice systems.7 More
advanced coupling strategies exist (see, e.g., Ref. 7), of which

we choose the Coupled Finite Differences (CFDs) proposed by
Anderson,6 for the ease of its implementation.

To outline how CFDs can be applied to lattice problems,
it is convenient to decompose the set β into different reaction
channels. That is, two transitions i1 → j1 and i2 → j2 belong to
the same reaction channel Aβ , if they belong to the same reac-
tion β and cause the same change ξAβ := j1 − i1 = j2 − i2.
Intuitively, this introduces a spatial resolution of the reaction
set β. While β includes, for instance, all CO adsorption on cus
sites, a CO adsorption on the first cus site will not belong to the
same reaction channel as a CO adsorption on the second cus
site, simply because both change different entries in the integer
vector representing the current state of the system. In contrast,
all transitions, which correspond to a CO adsorption on the first
cus site, will be in the same channel as they all change the same
entry from empty to CO and leave all others unchanged. With
this concept, we can rewrite the master equation as

d
dt

Pi(t) =
∑
β

∑
Aβ

[
aAβ (i − ξAβ )Pi−ξAβ (t) − aAβ (i)Pi(t)

]
,

(35)
where, in the context outlined in Section II, the reaction propen-
sity aAβ (i) has the form

aAβ (i) =

{
kβ , if i → i + ξAβ ∈ Aβ .
0, else.

(36)

The two independent trajectories for an uncoupled finite dif-
ference approximation can now be regarded as a single process
operating on two lattices. The corresponding master equation
is then
d
dt

Pi,j(t) =
∑
β

∑
Aβ

[
a

Aβ

h (i − ξAβ )Pi−ξAβ , j(t) − a
Aβ

h (i)Pi, j(t)
]

+
∑
β

∑
Aβ

[
a

Aβ

−h ( j − ξAβ )Pi,j−ξAβ (t) − a
Aβ

−h (j)Pi, j(t)
]
,

(37)

where Pi ,j(t) is the joint probability to find the first lattice in
the state i and the second lattice in the state j. The index h at
the propensity a

Aβ

h (·) indicates that this is obtained by using
the RCs {. . . , (1 + h)kα, . . .}. Here kα is the RC, for which
we want to estimate the corresponding DRS. Summing over
j will therefore lead to the master equation (35) for the RCs
{. . . , (1 + h)kα, . . .} and summing over i will achieve the same
for {. . . , (1 − h)kα, . . .}. Correspondingly, 〈R〉((1 + h)kα) will
be estimated by only using the i-component of the joint process
and 〈R〉((1 − h)kα) by only using the j-component. If we now
calculate the variance of the difference Rh(i) � R

�h(j) using the
joint probability Pi ,j, we obtain

Var(Rh − R−h) = Var(Rh) + Var(R−h) − 2〈δRhδR−h〉, (38)

i.e., the variance of the difference would be reduced if there
would be a positive correlation 〈δRhδR−h〉 between Rh(i) and
R
�h(j). For the uncoupled FDA obeying Eq. (37) the correlation
〈δRhδR−h〉 is, of course, zero due to the statistical independence
of i and j.The idea isnowto introduceanewjointprocess,which
gives thesameaverages 〈Rh〉and 〈R−h〉butapositivecorrelation
〈δRhδR−h〉. There are multiple different possibilities to realize
this.7 Anderson’smethodemploysaprocessobeying themaster
equation

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-029704
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d
dt

Pi,j(t) =
∑
β

∑
Aβ

[
a

Aβ

1 (i − ξAβ , j − ξAβ )Pi−ξAβ , j−ξAβ (t) − a
Aβ

1 (i, j)Pi, j(t)
]

+
∑
β

∑
Aβ

[
a

Aβ

2 (i − ξAβ , j)Pi−ξAβ , j(t) − a
Aβ

2 (i, j)Pi, j(t)
]

+
∑
β

∑
Aβ

[
a

Aβ

3 (i, j − ξAβ )Pi, j−ξAβ (t) − a
Aβ

3 (i, j)Pi, j(t)
]

(39)

with the propensities,

a
Aβ

1 (i, j) = min(a
Aβ

h (i), a
Aβ

−h (j))

=




kβ
−h

if i → i + ξAβ ∈ Aβ ,
and j → j + ξAβ ∈ Aβ ,

0 else,

a
Aβ

2 (i, j) = a
Aβ

h (i) −min(a
Aβ

h (i), a
Aβ

−h (j))

=




kβh
if i → i + ξAβ ∈ Aβ ,
and j → j + ξAβ < Aβ ,

kβh − kβ
−h

if i → i + ξAβ ∈ Aβ ,
and j → j + ξAβ ∈ Aβ ,

0 else,

a
Aβ

3 (i, j) = a
Aβ

−h (i) −min(a
Aβ

h (i), a
Aβ

−h (j))

=




kβ
−h

if i → i + ξAβ < Aβ ,
and j → j + ξAβ ∈ Aβ ,

0 else,

(40)

where we inserted Eq. (36) for the respective second equal
sign. Using that, we can split the propensity a

Aβ

2 (i, j) into two

new ones a
Aβ

2,1(i, j) and a
Aβ

2,2(i, j). The first will be non-zero

(a
Aβ

2,1(i, j)= kβh ) only when the first case fulfilled (i → i+ ξAβ

∈ Aβ and j → j + ξAβ < Aβ). The second will only be non-zero

(a
Aβ

2,2(i, j) = kβh − kβ
−h) for the second case (i → i + ξAβ ∈ Aβ

and j → j + ξAβ ∈ Aβ).
We can describe the Markov process defined by Eqs.

(39) and (40) in a more chemical language, which allows
an implementation using the standard interfaces of lattice
kMC codes. If we have the sites (a, b, c, . . .) for our origi-
nal problem, the process for CFD operates on a lattice with
the sites (a1, b1, c1, . . . , a2, b2, c2, . . .). For the CO oxidation
on RuO2(110), this can be achieved by replacing the two site
types (br and cus) by the four sites (br1, cus1, br2, and cus2).
Suppose the reaction channel Aβ originally corresponds to a
change of the adsorption states on the sites (a, b), i.e., it can
be represented by

A@a + B@b
kβ
→ C@a + D@b, (41)

where A@a means that the site a carries the adsorbate A, which
is altered to the adsorbate C after the process has been executed.
On our doubled lattice for CFD, we have to replace this with
appropriate new reaction channels. The reaction channel corre-
sponding to a

Aβ

1 simultaneously executes the original process

(41) on both lattices, i.e., we have to introduce the reaction

A@a1 + B@b1 + A@a2 + B@b2

kβ
−h
→ C@a1 + D@b1 + C@a2 + D@b2,

(42)

where
kβ
−h
→ indicates that thiswillbeexecutedwitha rateconstant

kβ
−h. Correspondingly, the reaction channel for a

Aβ

2,2 will have the
reaction equation

A@a1 + B@b1 + A@a2 + B@b2

kβh −kβ
−h
→ C@a1 + D@b1 + A@a2 + B@b2,

(43)

as it only changes the configuration on the first lattice, but
requires this change to be possible on the second lattice. What
remains are the channels, which correspond to a

Aβ

2,1 and a
Aβ

3 .
These change the configuration on one lattice according to Aβ
and require that Aβ is not possible on the respective other lattice.
The required logic is usually not implemented in standard inter-
faces of lattice kMC codes (at least, kmos does not allow this).
We therefore employ the same trick which leads to the splitting
of a

Aβ

2 and introduce a new reaction channel for each situation
which fulfills the requirements. In other words, we introduce
for every pair (E, F) , (A, B) the reaction

A@a1 + B@b1 + E@a2 + F@b2

kβh
→ C@a1 + D@b1 + E@a2 + F@b2,

(44)

which corresponds to a
Aβ

2,1 and the reaction

E@a1 + F@b1 + A@a2 + B@b2

kβ
−h
→ E@a1 + F@b1 + C@a2 + D@b2,

(45)

which corresponds to a
Aβ

3 . We can thus employ the standard
interface of kmos for defining the process and perform the CFD
without needing to touch the source code. The price we pay
is that for a two-site reaction as (41) in the original process,
we have to introduce O((Nspec.)2) in the process for the CFD.
Here, N spec. is the number of surface species or more general the
number of states a site can attain. Probably, this is not the most
efficient way of implementing CFD and more complex reac-
tions operating on more than two sites will require even more
additional reactions. However, for the case at hand, this over-
head stays reasonable and running N kMC steps for the CFD
comes at roughly five times the cost of running N kMC steps of
the original process.
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IV. RESULTS

As described in Section II D, we study the CO oxidation on
the RuO2(110) surface for the reaction conditions T = 600 K,
pO2 = 1 bar, and pCO ∈ [0.05, 50] bars. The investigated reac-
tion rate is the CO oxidation turnover frequency (displayed in
Figure 1) and we test its sensitivity to all (22) different rate
constants using the outlined three-stage strategy.

A. First step: Bounds

The first step is the estimation of bounds for the DRS from
the Fisher Information Metric (FIM) and the time-integrated
autocorrelation function (TAC). In all simulations, we employ
lattices of 20×20 unit cells as in previous studies.16,18 After an
initial relaxation to the steady state with 108 steps, the TAC is
sampled from 100 sub-trajectories each having a length of 107

steps and using 107 decorrelation steps between the sampling
trajectories.

In practice, a good choice for M is usually unknown and
thus we have to test different M for estimating the TAC cR until
we reach convergence. As the choice of M does not alter the
kMC code, we can perform this test for a range of possible
values during a single kMC simulation. Although we do not
expect small values of M to be sufficient, we test all powers of
two between 20 = 1 and 220 ≈ 106. For the case pCO = 1 bar, we
show the dependence of the TAC estimates on the choice of M
in Figure 2. Also shown are the standard deviations of the TAC
estimates as error bars. For small values of M, these are very
small but increase for larger values of M. Thus the choice of M
has to balance two errors. It needs to be large enough such that
expansion (22) is accurate, and, on the other hand, small enough
such that the variance of the sampled estimate does not grow too
large. This can be seen in Figure 2, where the TAC is well con-
verged for a choice M = 212 = 4096, and the higher expansion
accuracy for larger M gets corrupted by the sampling error.

All DRSs must add up to one and we therefore expect the
relevant DRSs to be in this order of magnitude (see the supple-
mentarymaterial for theproof).Asa thresholdfor therelevance,
wechoose tol =0.02, i.e., allDRSswithaboundBα smaller than

FIG. 2. Estimate of the time-integrated auto-correlation function (TAC) as a
function of the expansion parameter M for the CO oxidation on RuO2(110)
for T = 600 K, pO2 = 1 bar, and pCO = 1 bar. Also shown is the standard
deviation as error bars. The TAC is well converged for a choice M = 212

= 4096.

FIG. 3. Fraction of all reactions with a sensitivity bound Bα above 2% (blue,
left axis) and the corresponding value for the expansion parameter M (red,
right axis).

this will not be calculated later on. Figure 3 shows the fraction
of all DRSs, whose bounds Bα are above the threshold tol (blue,
left axis) in the dependence of pCO and for fixed pO2 = 1 bar
and T = 600 K. Further, we indicate our choice for the trunca-
tion limit M (red, right axis). Notably, we found no convergence
for M ≤ 220 for CO partial pressures around 5 bars, i.e., in the
vicinity of the point of highest reactivity. The interpretation of
the expansion (22) as a time integration suggests that we are
close to a second order phase transition, where the correlation
time diverges and thus the integration limit must be chosen very
large. A closer look at the coverage curves in Ref. 2 corrobo-
rate this interpretation, but also the results on spatial correlation
from Refs. 19 and 20 point in this direction. Also, we can work
with much smaller truncation limits M for small pCO than for
large, although, in both cases, we are not close to the reaction
conditions for which we expect a second order phase transi-
tion. We explain this as follows. For low pCO, in the O-covered
regime, the kinetics almost exclusively takes place on the cus
sites16 and the surface lattice is fully covered with oxygen. An
adsorption of CO onto a vacant site, resulting from an oxygen
desorption, triggers with very high probability either a CO des-
orption or a CO+O reaction in the next step, as the RCs for
both are much higher than for any other possible reactions. The
resultingvacanciesare likely tobefilledwithoxygen (due to the
high O2 adsorption RC). We thus quickly return to a fully oxy-
gen covered surface. We therefore expect the correlation time
in a number of kMC steps to be rather short. For high pCO and
the concomitant almost always fully CO-covered surface, the
removal of oxygen would require much longer as now there are
many fast competing processes. For instance, CO desorption
fromcussiteshasa ten timeshigherRCthan themost likelyOcus

+ CObr reaction and there are many COcus. Thus the decay of
the oxygen adsorbed state would take rather many kMC steps.

In all cases, we found that roughly 50% of the DRS
bounds are above our tolerance. For the case, that we would
directly proceed with a finite difference approximation as in
Ref. 22, this would translate into a 50% saving in CPU-time.
In our approach, we add the direct estimation of the sensitiv-
ities between the bound estimation and the Finite Difference
Approximation. The question naturally arises, what is the ben-
efit of the bound estimation with an extra kMC simulation to

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-029704
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-029704
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save 50% of the sampling effort in the subsequent kMC simu-
lation for the direct estimation of the sensitivities. The answer
is that this step is not only there for ruling out DRSs but also
to identify a reasonable choice of M as, in Sec. IV B, we will
employ the same expansion which led to Eq. (22). Thus, this
pre-screening step reduces the sampling effort to 50%/NM as
we save the examination of NM different values of M. As we
need to sample only a single TAC but N reac . DRSs, determining
M in this step allows for significant savings in the subsequent
step.

B. Second step: Direct sampling of the DRS

As in Section IV A, we consider first the case T = 600 K,
pO2 = 1 bar, pCO = 1 bar, and the dependence on the expansion
length M. For this, we ignore the results from the bound estima-
tions and sample all DRSs. In order to test the computational
costs, we, however, perform an extra kMC simulation for each
M. For these, we employ similar settings as in Section IV A,
i.e., a 20 × 20 lattice and sampling over 100 snippets of 107

kMC steps, between which we perform 106 steps for decorre-
lation. As in Section IV A, we employ these 100 samples to
obtain the estimated DRSs and corresponding variances. The
results are summarized in Figure 4. As this is the demanding
task, we only show Xα

1 in the top panel. The estimates are well
converged for M = 212, i.e., the value we have extracted from the
simulation of the TAC. The variance of the estimation linearly
increases with M, which is reflected by the standard deviation,
shown in the panel below. For the current set of reaction con-
ditions and a reasonable choice of M, the standard deviations
are in the order of 10�2 or below, so that we estimate all DRSs

FIG. 4. Estimates of the Degree of Rate Sensitivities (DRSs) based on the
linear response sampling as a function of the expansion parameter M for the
CO oxidation on RuO2(110) for T = 600 K, pO2 = 1 bar, and pCO = 1 bar
(top panel). As the TAC (see Fig. 2), the DRSs are converged for a choice
M = 212 = 4096. The standard deviations of the sampled DRSs grow with the
root of M (middle panel). The lower panel shows the CPU time, which grows,
as expected, linear with the logarithm of M (up to an additive constant).

for the cost of two extra kMC simulations (one for estimat-
ing the bounds and M and one for estimating the DRSs). The
CPU-time for the last simulation comes at only slightly higher
costs by the extra sampling as can be seen in the lowest panel in
Fig. 4. As expected, the sampling overhead linearly depends on
log M and, for M = 220 ≈ 106, it roughly requires one third of
the CPU time. The computational savings of the two-step pro-
cedure stem from the possibility to avoid the test of different
valuesofM.Without thisprescreeningofdifferentM values, the
sampling overhead would be responsible for>80% of the CPU
load for the considered case. The simulation would therefore
run roughly six times as long as a pure kMC simulation. Utiliz-
ing theestimatedboundsobtained inSectionIVA, theoverhead
could have been further reduced by roughly 50%. The sampling
of the TAC comes at roughly the same costs as a full DRS sam-
pling at fixed M, as we have to test for multiple M. So, we end
up with an overhead of a factor 2-3 (including the CPU-time
for the prescreening). Without prescreening we instead would
arrive at an overhead of a factor≈6. For more complicated reac-
tion mechanism and the concomitant larger number of RCs, this
saving would increase.

With the estimated bounds and the values for M obtained
in Section IV A, we now sample the DRSs for varying CO par-
tial pressures. We estimate these from 1000 sub-trajectories
each of the size 100×M steps, but at least 106 and at
most 107. As M can be regarded as a correlation time, we
employ 10×M decorrelation steps between the samples. As for
Fig.3,wedonotperformanestimationaround thepointofhigh-
estactivity, sincewewouldneedM tobe larger thanonemillion.
In principle, larger M could have been employed, but, as the

FIG. 5. The sampled Degree of Rate Sensitivity (DRS) based on the linear
response sampling as a function of the CO partial pressure pCO (T = 600 K,
pO2 = 1 bar, top panel). The fluctuations during sampling expressed as stan-
dard deviation σ are shown in the lower panel.The simulation employed the
expansion parameters M obtained in Sec. IV A (compare Fig. 3). Not shown are
those DRSs which are significantly below zero and the range around pCO = 5
bars, for which M > 220 would be required.
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variance linearly increases with M, we do not expect accurate
enough estimates.

The results for the DRSs are shown in the top panel of
Fig. 5. Shown are only those DRSs, which are non-zero in the
range of the considered reaction conditions. In most cases, the
number of non-vanishing DRSs is small, even considering the
pre-screening. Inspecting the bottom panel of Fig. 5, we find
that the standard deviation of our estimates largely depends
on the considered reaction. Especially, those DRSs, which are
low, can be estimated pretty well with very small sampling
errors. However, also most other DRSs can be obtained with
an accuracy below 0.1, i.e., reasonably accurate for many pur-
poses. Only close to the gap and for the CO ad/desorption on
cus sites at high CO partial pressures, the standard deviations
exceed the value of 0.1. This increase in the standard devia-
tions directly corresponds to the larger values of M required
there. For high pCO, we observe that the DRS estimates for the
fastest processes (CO ad/desorption on cus sites) have the high-
est variance. This behaviour is similar to the Girsanov trans-
form based approach.12 If we need more accurate estimates
with σ(Xα

1 )< 0.1, we could increase the sampling time. How-

ever, the sampling error behaves as O(N−
1
2 ), where N is the

total number of kMC steps. So pushing the error below the
targeted limit might become very demanding for those DRSs,
which cannot be sampled well, and it might become reasonable
to employ a different strategy for obtaining these.

C. Third step: Coupled finite differences

We now employ CFD to estimate the DRSs, which could
not be sampled with sufficient accuracy by the direct sampling
approach from Sec. IV B. These are all DRSs which lay in
the gap around pCO = 5 bars and those for which the exist-
ing estimates have a standard deviation above 0.1. To estimate
the DRSs and the respective variances, we employ 1280 sam-
ples each having 106 kMC steps. All other settings are as in
Section IV B. For the difference parameter, we choose h = 0.01.

Figure 6 shows the final results combining the IRF and
CFD estimates (top panel) with the corresponding standard
deviation (lower panel). Symbols mark data points which have
been obtained using the CFD, all others have directly been sam-
pled by the IRF. The standard deviations for the estimates are
now below the desired value of 0.1, except close to the point of
highest activity where, for some DRSs, we stay a little above the
desired accuracy. However, the affected DRSs are rather large
there and the relative error is of an acceptable order.

Having a closer look, we find that for the most of the pres-
sure range in Fig. 6 we just need a few or no CFD estimates. This
especially holds true for low pCO where all DRSs can accurately
be estimated and no CFD needs to be performed. This can be
explained by the relatively small values for the expansion order
M in the IRF,as thevarianceof theestimatorgrows linearlywith
M andthussmallM shouldrather lead toaccurateestimates.But
also for large pCO only the DRSs for CO ad/desorption on cus
sites needed improvements. Only close to the pressures where
the DRSs for CO and O2 ad/desorption on cus sites “diverge”
multiple DRSs needed refinements using CFD.

The procedure, as outlined, leaves room for improvement
if CPU time really is the limiting factor. Most notably, we

FIG. 6. Same as Fig. 5, but missing points (around pCO = 5 bars) and those
with a too high variance have been determined using coupled finite differences.
These data are represented using symbols; all other points have been obtained
from the linear response sampling.

could perform the IRF with much less kMC steps. At low pCO,
the DRSs have an accuracy which is roughly ten times lower
than required, so we could save a factor around hundred here.
Also, we would not need to perform ten billion kMC steps for
the IRF sampling at high CO partial pressures. Except for CO
ad/desorption on cus sites, all DRSs would have the desired
accuracy already at around one billion steps. Also running IRF
with M > 106 in the gap around pCO = 5 bars might not help
a lot for the large DRSs, but it might allow to determine the
loweroneswithsufficientaccuracy.However,evenin thisunop-
timized form, we significantly reduce the computational effort
with respect to the very expensive numerical derivatives.

V. DISCUSSION

We now turn to the discussion of the results obtained in
Sec. IV. As it is the more common measure, we calculated the
Degree of Rate Control (DRC) from our DRS results and Eq.
(14). The DRC is shown in Fig. 7. For low CO partial pressures,
the DRC identifies only a single rate-determining step, which
is the COcus + Ocus reaction. For high CO partial pressures,
the oxygen adsorption on cus-sites is the only rate-determining
step.Betweenthese twoextremes,wefindmultiplesteps,which
have significant DRCs. Close to 5 bars, the absolute DRCs of
all displayed reactions are in the order of one or larger and the
notion of a single rate-determining step seems not appropriate,
anymore.

If we compare the DRC in Fig. 7 with the DRS in Fig. 6,
the DRC provides a clearer picture. In contrast, the DRS plot
is busier but also provides information which is not present in
the DRCs. At low pCO, the DRS identifies adsorption and des-
orption of CO and oxygen on cus-sites to have an impact on the
TOF,withopposite signsbut (roughly) thesameabsolutevalues
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FIG. 7. The sampled degree of rate control as a function of the CO partial
pressure pCO (T = 600 K, pO2 = 1 bar, top panel). Symbols represent data
which were obtained using coupled finite differences.

for forward and backward reactions. This allows for an intuitive
microscopic interpretation. At these conditions, the surface is
fully oxygen covered and we need to get CO onto the sur-
face for a high TOF with the employed Langmuir-Hinshelwood
mechanism. To achieve this, empty sites need to be created by
one of the oxygen desorption processes and the most effective
2Ocus → O2(gas) desorption has a positive DRS. Now, CO and
oxygen adsorptions onto the created empty sites compete with
each other. So, the O2(gas)→ 2Ocus adsorption has a negative
DRS as it blocks the more catalytically active configuration.
The CO adsorption on cus sites has a positive sign because it
leads to configurations for which the Ocus+COcus → CO2(gas)
reaction is possible. Once a CO molecule is adsorbed on a cus
site, we have a competition between the desorption and the
actual reaction. The desorption destroys the desired configu-
ration and therefore has a negative sign. The Ocus + COcus →

CO2(gas) has a positive sign, which now results from the two
competing parts Xα

0 and Xα
1 . The direct relative contribution Xα

0
to theTOF is always positive.At these low COpartial pressures,
the Ocus+COcus → CO2(gas) reaction is responsible for almost
all the reactivity and its relative contribution is therefore very
close to one. This can be seen from Fig. 8, which shows the
sensitivity bounds Bα (Eq. (16)), which are proportional to the
square roots of reaction rates of each elementary step. The sec-
ond is the contribution Xα

1 to the creation/annihilation of the
desired configurations, which should be negative for this case
because the reaction removes the CO from the surface. This
contribution is close to zero as the dominant channel of the CO
removal from the surface is the CO desorption from cus sites,
which has a higher frequency (compare Fig. 8).

At low CO partial pressures, the cancellation of the DRS
for ad/desorption on cus sites suggests that these steps are close
to equilibrated. This interpretation is supported by the bounds
for the forward and backward rates, which are almost the same
for CO ad/desorption and oxygen ad/desorption on cus sites,
respectively. As we increase pCO, the CO coverage on cus sites
also increases. Although this coverage is still very low, the fast
Ocus + COcus → CO2(gas) reaction becomes an alternative to
the Ocus-desorption for oxygen removal from the surface. This
is reflected by the deviation of the bounds for Ocus-desorption
and Ocus-adsorption in Fig. 8. In consequence, the DRC for the

FIG. 8. Bounds Bα for the degree of rate sensitivity as a function of the
CO partial pressure pCO (T = 600 K, pO2 = 1 bar, top panel). The bounds
show the same rapid increase close to pCO = 5 bars as the DRS. However,
some elementary steps would be marked important by the bounds, but are
not according to the DRS criterion, e.g., adsorption and desorption of CO on
bridge sites.

pair of Ocus-ad/desorption starts deviating from zero, as they
are not equilibrated anymore. For the point at pCO = 5 bars, we
speculated that its very close to a second order phase transition
and the correlation time as well as fluctuations should increase
as we approach this point. This results in an increase of the
time-integrated auto-correlation (TAC), which is reflected in
an increase of the bounds for most elementary steps. The same
holds for most integrated response functions Xα

1 , and, in con-
sequence, the absolute DRS for the relevant elementary steps
increases while approaching the “critical point.” For the DRC
in Fig. 8 for the COcus-ad/desorption, this results in an amplifi-
cation of the effect of the slight deviation from equilibrium. The
Ocus-ad/desorption is much better equilibrated at low pCO and
therefore this amplification of the DRC sets in at little higher
pCO. In contrast to the COcus-ad/desorption, the increase in the
absolute DRC of the Ocus-ad/desorption is more pronounced
because this reaction pair is additionally strongly driven out of
equilibriumwhileapproachingpCO = 5bars.Notably, theDRC
for the Ocus+COcus reaction shows a similar increase, when the
COpartialpressureexceeds theoxygenpartialpressurepO2 = 1
bar by a factor of two to three. This means that the contribution
Xα

1 by the creation and annihilation of the desired configuration
must be positive for the Ocus + COcus reaction. This is in con-
trast to the case at low partial pressures, where it is negative (but
close to zero). At higher pressures (pCO ∈ [2, 5] bars), the pres-
enceofCOon thesurface is still criticalwhich is reflectedby the
positive DRS for the COcus-adsorption. However, the removal
of COcus by the Ocus + COcus reaction is now compensated by
the creation of two vacant cus-sites, which will likely be filled
by CO.

Close to pCO = 5 bars, oxygen still dominates the sur-
face and getting CO onto the surface is still crucial, but we have
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alreadysomekindofmixedcompositionwithbothCOandoxy-
gen on the surface. We now have some CO on the bridge sites,
and, consequently, the fast Ocus+CObr reaction starts contribut-
ing to the overall TOF (compare the supplementary material).
Oxygen is very strongly bound to the bridge sites and there-
fore covers these. The CO adsorption on the bridge site has a
positive DRS for two reasons: (i) it enables the Ocus +CObr

reaction and (ii) it prevents oxygen to adsorb on the pair of
vacant sites created by the latter reaction. The corresponding
CObr-desorption plays no role, because the Ocus + CObr reac-
tion is significantly faster and removes most of the CObr. The
Ocus + Obr adsorption removes vacant sites, which are needed
for the CO-adsorption on both types of sites, resulting in a neg-
ative DRS. The Obr + COcus reaction has two effects. First it
slightly contributes to the overall TOF and second it creates free
bridge and cus sites, which both will likely be filled with CO.
The Ocus+CObr reaction itself has no impact because it is so fast
that no other mechanism, which would destroy the Ocus/CObr

pair, can compete with it.
Increasing the CO partial pressure beyond 5 bars, the DRS

and DRC of all species drop because we are moving away from
the point with the highest correlation and large fluctuations.
Further, we are increasing the CO content on the surface, so
that it becomes less and less important to get CO onto the sur-
face. At around 6–7 bars, we reach a point, where all DRS and
DRC are close to zero except for the Ocus +COcus reaction. As
this is still the dominant contribution to the overall TOF, we can
interpret this point as the best mixed phase, where the appear-
ance of appreciable configurations is largely unaffected by
accelerating one of the elementary steps. A further increase
leads then to a CO dominated surface, where the DRC identi-
fies the Ocus-adsorption as the rate-determining step. Having
a closer look at the results for the DRS, this result is easily
understood. On this CO covered surface, the crucial point is to
get oxygen onto the surface. Therefore the COcus-desorption
has a positive impact, as it creates empty sites. Oxygen adsorp-
tion onto cus-sites competes with CO adsorption onto the same
sites, i.e., the oxygen adsorption has a positive DRS and the CO
adsorption has a negative DRS. At high CO partial pressures,
CO ad/desorption is equilibrated and their DRS must cancel
when summing to the DRC. Once on the surface, oxygen binds
very strongly and is almost exclusively removed by forming
CO2, with the dominant reaction being Ocus+CObr and smaller
contributions by the Ocus +COcus reaction. Due to the stronger
binding of CO to bridge sites (compared to cus-sites), CObr-
desorption is comparatively slow, so that vacancy pairs with
one bridge site are rare and thus the competition between oxy-
gen adsorption involving a bridge site and the CObr-adsorption
does not play a big role.

The above discussion highlights why it is beneficial to
consider both DRC and DRS. At high CO partial pressures,
the DRC identifies the oxygen adsorption onto cus-sites as the
only rate-determining step. As the barrier height for this reac-
tion is already at its minimum, we would get no hint how to
increase the reactivity. The DRS provides this missing informa-
tion. Lowering the CO partial pressure (lowering CO adsorp-
tion) or increasing the O2 partial pressure (increasing oxygen
adsorption) are two options for a better performance. Alterna-
tively, we could modify the catalyst such that CO has a weaker

binding to the surface (increasing CO desorption). But most
prominently, we find that changing the oxygen binding has
no effect, as oxygen desorption is unimportant. Thus just try-
ing to reduce CO binding is a promising route. In contrast,
binding of both is important at low CO partial pressures. If
we want to modify the catalyst, such that the barrier of the
rate-determining Ocus + COcus reaction is decreased, we must
therefore take care not to increase oxygen binding or to reduce
CO binding. On the other hand, we would not be able to tell
whether CO ad/desorption is rate-determining at intermedi-
ate CO partial pressures, if we would solely consider the DRS
curves in Fig. 6. Even when considering the frequencies (or
the bounds in Fig. 8) for forward and backward reactions, this
step looks always equilibrated. The DRC curve in Fig. 7, how-
ever, tells that this step is rate-determining and is therefore not
equilibrated.

Finally, we want to draw our attention to the question,
which information could be extracted from only considering
the bounds in Fig. 8 as sensitivity measures. As expected, the
bounds overestimate the DRS, often by more than one order
of magnitude. On the plus side, the five most important steps
are correctly identified for low CO pressures. Also the steep
increase of the most absolute DRS is properly reflected by
the bounds. The Ocus desorption does not follow this trend
and this is properly reproduced by the corresponding DRS
bound in Fig. 8. For high CO pressures, the adsorption and
desorption of CO on cus-sites are ranked most important,
but the oxygen adsorption on cus-sites is only ranked sev-
enth according to the Fisher Information Metric (FIM) based
criterion. Furthermore, a number of processes involving bridge
sites are identified as important. We would therefore miss the
important feature that only the kinetics on the cus sites deter-
mines the reaction rate for most of the considered reaction con-
ditions. So, a FIM based sensitivity analysis27 provides a first,
more global insight into the reaction kinetics, but a detailed
picture of the microscopic reaction pathways requires a deeper
analysis.

VI. CONCLUSION

We have presented a three-stage procedure to determine
local sensitivity indices, specifically the degree of rate sensi-
tivity, from which other sensitivity measures as the degree of
rate control can easily be derived. In the first stage, bounds
for the DRSs are obtained to eliminate those DRSs which are
close to zero. In the second stage, the remaining DRSs are esti-
mated using a direct sampling approach, which is based on a
truncated series expansion of time-integrated linear response
functions. Only those DRSs, which cannot be accurately
enough estimated in the previous stages, are finally obtained
using coupled finite differences. The devised approach can
lead to significant computational savings, compared with
the straightforward approach solely employing numerical
derivatives.

We have demonstrated the approach on the example of
the CO oxidation on RuO2(110). Comparing with our previ-
ous study for the sensitivity analysis of the same model,16 we
arrive at significantly more accurate estimates for the sensi-
tivity indices in a fraction of the CPU-time. For this model,

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-029704
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we have also demonstrated that the information obtained dur-
ing the three-stage procedure can be used to derive a detailed
interpretation of the nature of the microscopic reaction kinet-
ics. We found that the DRS criterion is a suitable complement
to the more common DRC and allows to explain why a step is
rate-determining.

The methods for sampling the bounds and the IRF
approach have been implemented into the open-source kMC
package kmos and we are currently preparing it to become a
part of the next publicly available update. The CFD has been
implemented using just the front-end and future development
will target at allowing for a more efficient implementation but
also at alternative coupling strategies.7 Also some effort needs
to be directed towards a more balanced strategy minimizing the
overall computational costs.

SUPPLEMENTARY MATERIAL

See supplementary material for additional information on
the derivations of series expansions of the TAC and the IRF
and the pseudocode for their sampling as well as for the DRS
sum rule.
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