3,084 research outputs found
Quantum protocols for anonymous voting and surveying
We describe quantum protocols for voting and surveying. A key feature of our
schemes is the use of entangled states to ensure that the votes are anonymous
and to allow the votes to be tallied. The entanglement is distributed over
separated sites; the physical inaccessibility of any one site is sufficient to
guarantee the anonymity of the votes. The security of these protocols with
respect to various kinds of attack is discussed. We also discuss classical
schemes and show that our quantum voting protocol represents a N-fold reduction
in computational complexity, where N is the number of voters.Comment: 8 pages. V2 includes the modifications made for the published versio
Absorption spectra of Fe L-lines in Seyfert 1 galaxies
Absorption L-lines of iron ions are observed, in absorption, in spectra of
Seyfert 1 galaxies by the new generation of X-ray satellites: Chandra (NASA)
and XMM-Newton (ESA). Lines associated to Fe23+ to Fe17+ are well resolved.
Whereas, those corresponding to Fe16+ to Fe6+ are unresolved. Forbidden
transitions of the Fe16+ to Fe6+ ions were previously observed, for the same
objects, in the visible and infra-red regions, showing that the plasma had a
low density. To interpret X-ray, visible and infra-red data, astrophysical
models assume an extended absorbing medium of very low density surrounding an
intense X-ray source. We have calculated atomic data (wavelengths, radiative
and autoionization rates) for n=2 to n'=3-4 transitions and used them to
construct refined synthetic spectra of the unresolved part of the L-line
spectra.Comment: 17 pages, 5 figures, Journal of Quantitative Spectroscopy and
Radiative Transfer, in pres
Polar Field Reversal Observations with Hinode
We have been monitoring yearly variation in the Sun's polar magnetic fields
with the Solar Optical Telescope aboard {\it Hinode} to record their evolution
and expected reversal near the solar maximum. All magnetic patches in the
magnetic flux maps are automatically identified to obtain the number density
and magnetic flux density as a function of th total magnetic flux per patch.
The detected magnetic flux per patch ranges over four orders of magnitude
( -- Mx). The higher end of the magnetic flux in the polar
regions is about one order of magnitude larger than that of the quiet Sun, and
nearly that of pores. Almost all large patches ( Mx) have the
same polarity, while smaller patches have a fair balance of both polarities.
The polarity of the polar region as a whole is consequently determined only by
the large magnetic concentrations. A clear decrease in the net flux of the
polar region is detected in the slow rising phase of the current solar cycle.
The decrease is more rapid in the north polar region than in the south. The
decrease in the net flux is caused by a decrease in the number and size of the
large flux concentrations as well as the appearance of patches with opposite
polarity at lower latitudes. In contrast, we do not see temporal change in the
magnetic flux associated with the smaller patches ( Mx) and that of
the horizontal magnetic fields during the years 2008--2012.Comment: 21 pages, 7 figures. Accepted for publication in Ap
Resolved 24.5 micron emission from massive young stellar objects
Massive young stellar objects (MYSO) are surrounded by massive dusty
envelopes. Our aim is to establish their density structure on scales of ~1000
AU, i.e. a factor 10 increase in angular resolution compared to similar studies
performed in the (sub)mm. We have obtained diffraction-limited (0.6") 24.5
micron images of 14 well-known massive star formation regions with
Subaru/COMICS. The images reveal the presence of discrete MYSO sources which
are resolved on arcsecond scales. For many sources, radiative transfer models
are capable of satisfactorily reproducing the observations. They are described
by density powerlaw distributions (n(r) ~ r^(-p)) with p = 1.0 +/-0.25. Such
distributions are shallower than those found on larger scales probed with
single-dish (sub)mm studies. Other sources have density laws that are
shallower/steeper than p = 1.0 and there is evidence that these MYSOs are
viewed near edge-on or near face-on, respectively. The images also reveal a
diffuse component tracing somewhat larger scale structures, particularly
visible in the regions S140, AFGL 2136, IRAS 20126+4104, Mon R2, and Cep A. We
thus find a flattening of the MYSO envelope density law going from ~10 000 AU
down to scales of ~1000 AU. We propose that this may be evidence of rotational
support of the envelope (abridged).Comment: 21 pages, accepted for A&
High Resolution Spectroscopy of the X-ray Photoionized Wind in Cygnus X-3 with the Chandra High Energy Transmission Grating Spectrometer
We present a preliminary analysis of the 1--10 keV spectrum of the massive
X-ray binary Cyg X-3, obtained with the High Energy Transmission Grating
Spectrometer on the Chandra X-ray Observatory. The source reveals a richly
detailed discrete emission spectrum, with clear signatures of
photoionization-driven excitation.
Among the spectroscopic novelties in the data are the first astrophysical
detections of a number of He-like 'triplets' (Si, S, Ar) with emission line
ratios characteristic of photoionization equilibrium, fully resolved narrow
radiative recombination continua of Mg, Si, and S, the presence of the H-like
Fe Balmer series, and a clear detection of a ~ 800 km/s large scale velocity
field, as well as a ~1500 km/s FWHM Doppler broadening in the source. We
briefly touch on the implications of these findings for the structure of the
Wolf-Rayet wind.Comment: 11 pages, 3 figures; Accepted for publication in ApJ Letter
The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-Time Emission from the Kilonova Ejecta
We present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter
Array ALMA radio observations of GW\,170817, the first Laser Interferometer
Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from
a binary neutron star merger and the first GW event with an electromagnetic
(EM) counterpart. Our data include the first observations following the
discovery of the optical transient at both the centimeter ( hours post
merger) and millimeter ( days post merger) bands. We detect faint
emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an
earlier observation at 2.46 d. We do not detect cm/mm emission at the position
of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from
0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB)
for energies erg. For fiducial SGRB parameters, our limits
require an observer viewer angle of . The radio and X-ray
data can be jointly explained as the afterglow emission from an SGRB with a jet
energy of erg that exploded in a uniform density
environment with cm, viewed at an angle of from the jet axis. Using the results of our light curve
and spectral modeling, in conjunction with the inference of the circumbinary
density, we predict the emergence of late-time radio emission from the
deceleration of the kilonova (KN) ejecta on a timescale of years
that will remain detectable for decades with next-generation radio facilities,
making GW\,170817 a compelling target for long-term radio monitoring.Comment: 8 pages, 4 figures, 1 table. ApJL, in press. Keywords: GW170817, LV
- …
