1,143 research outputs found

    ISO_q(3) and ISO_q(2,1)

    Full text link
    We prove the embedding of ISO_q(3) \hook ISU^{ex}_{\sqrt{q}}(2) and ISO_q(2,1) \hook ISL^{ex}_q(2,R) as ^*-algebras and give a Hilbert space representation of ISUqex(2)ISU^{ex}_{\sqrt{q}}(2)Comment: 10 pages, 12 figures, Late

    Multimodal information processing and associative learning in the insect brain

    Get PDF
    The study of sensory systems in insects has a long-spanning history of almost an entire century. Olfaction, vision, and gustation are thoroughly researched in several robust insect models and new discoveries are made every day on the more elusive thermo- and mechano-sensory systems. Few specialized senses such as hygro- and magneto-reception are also identified in some insects. In light of recent advancements in the scientific investigation of insect behavior, it is not only important to study sensory modalities individually, but also as a combination of multimodal inputs. This is of particular significance, as a combinatorial approach to study sensory behaviors mimics the real-time environment of an insect with a wide spectrum of information available to it. As a fascinating field that is recently gaining new insight, multimodal integration in insects serves as a fundamental basis to understand complex insect behaviors including, but not limited to navigation, foraging, learning, and memory. In this review, we have summarized various studies that investigated sensory integration across modalities, with emphasis on three insect models (honeybees, ants and flies), their behaviors, and the corresponding neuronal underpinnings

    Modeling effects of L-type ca(2+) current and na(+)-ca(2+) exchanger on ca(2+) trigger flux in rabbit myocytes with realistic T-tubule geometries.

    Get PDF
    The transverse tubular system of rabbit ventricular myocytes consists of cell membrane invaginations (t-tubules) that are essential for efficient cardiac excitation-contraction coupling. In this study, we investigate how t-tubule micro-anatomy, L-type Ca(2+) channel (LCC) clustering, and allosteric activation of Na(+)/Ca(2+) exchanger by L-type Ca(2+) current affects intracellular Ca(2+) dynamics. Our model includes a realistic 3D geometry of a single t-tubule and its surrounding half-sarcomeres for rabbit ventricular myocytes. The effects of spatially distributed membrane ion-transporters (LCC, Na(+)/Ca(2+) exchanger, sarcolemmal Ca(2+) pump, and sarcolemmal Ca(2+) leak), and stationary and mobile Ca(2+) buffers (troponin C, ATP, calmodulin, and Fluo-3) are also considered. We used a coupled reaction-diffusion system to describe the spatio-temporal concentration profiles of free and buffered intracellular Ca(2+). We obtained parameters from voltage-clamp protocols of L-type Ca(2+) current and line-scan recordings of Ca(2+) concentration profiles in rabbit cells, in which the sarcoplasmic reticulum is disabled. Our model results agree with experimental measurements of global Ca(2+) transient in myocytes loaded with 50 μM Fluo-3. We found that local Ca(2+) concentrations within the cytosol and sub-sarcolemma, as well as the local trigger fluxes of Ca(2+) crossing the cell membrane, are sensitive to details of t-tubule micro-structure and membrane Ca(2+) flux distribution. The model additionally predicts that local Ca(2+) trigger fluxes are at least threefold to eightfold higher than the whole-cell Ca(2+) trigger flux. We found also that the activation of allosteric Ca(2+)-binding sites on the Na(+)/Ca(2+) exchanger could provide a mechanism for regulating global and local Ca(2+) trigger fluxes in vivo. Our studies indicate that improved structural and functional models could improve our understanding of the contributions of L-type and Na(+)/Ca(2+) exchanger fluxes to intracellular Ca(2+) dynamics

    Impact of multiscale dynamical processes and mixing on the chemical composition of the upper troposphere and lower stratosphere during the Intercontinental Chemical Transport Experiment–North America

    Get PDF
    We use high-frequency in situ observations made from the DC8 to examine fine-scale tracer structure and correlations observed in the upper troposphere and lower stratosphere during INTEX-NA. Two flights of the NASA DC-8 are compared and contrasted. Chemical data from the DC-8 flight on 18 July show evidence for interleaving and mixing of polluted and stratospheric air masses in the vicinity of the subtropical jet in the upper troposphere, while on 2 August the DC-8 flew through a polluted upper troposphere and a lowermost stratosphere that showed evidence of an intrusion of polluted air. We compare data from both flights with RAQMS 3-D global meteorological and chemical model fields to establish dynamical context and to diagnose processes regulating the degree of mixing on each day. We also use trajectory mapping of the model fields to show that filamentary structure due to upstream strain deformation contributes to tracer variability observed in the upper troposphere. An Eulerian measure of strain versus rotation in the large-scale flow is found useful in predicting filamentary structure in the vicinity of the jet. Higher-frequency (6–24 km) tracer variability is attributed to buoyancy wave oscillations in the vicinity of the jet, whose turbulent dissipation leads to efficient mixing across tracer gradients

    Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer 210Pb

    Get PDF
    During the NASA Global Troposphere Experiment Pacific Exploratory Mission-Tropics (PEM-Tropics) airborne sampling campaign we found unexpectedly high concentrations of aerosol-associated 210Pb throughout the free troposphere over the South Pacific. Because of the remoteness of the study region, we expected specific activities to be generally less than 35 μBq m−3 but found an average in the free troposphere of 107 μBq m−3. This average was elevated by a large number of very active (up to 405 μBq m−3) samples that were associated with biomass burning plumes encountered on nearly every PEM-Tropics flight in the southern hemisphere. We use a simple aging and dilution model, which assumes that 222Rn and primary combustion products are pumped into the free troposphere in wet convective systems over fire regions (most likely in Africa), to explain the elevated 210Pb activities. This model reproduces the observed 210Pb activities very well, and predicts the ratios of four hydrocarbon species (emitted by combustion) to CO to better than 20% in most cases. Plume ages calculated by the model depend strongly on the assumed 222Rn activities in the initial plume, but using values plausible for continental boundary layer air yields ages that are consistent with travel times from Africa to the South Pacific calculated with a back trajectory model. The model also shows that despite being easily recognized through the large enhancements of biomass burning tracers, these plumes must have entrained large fractions of the surrounding ambient air during transport
    corecore