279 research outputs found

    Interaction of Ising-Bloch fronts with Dirichlet Boundaries

    Get PDF
    We study the Ising-Bloch bifurcation in two systems, the Complex Ginzburg Landau equation (CGLE) and a FitzHugh Nagumo (FN) model in the presence of spatial inhomogeneity introduced by Dirichlet boundary conditions. It is seen that the interaction of fronts with boundaries is similar in both systems, establishing the generality of the Ising-Bloch bifurcation. We derive reduced dynamical equations for the FN model that explain front dynamics close to the boundary. We find that front dynamics in a highly non-adiabatic (slow front) limit is controlled by fixed points of the reduced dynamical equations, that occur close to the boundary.Comment: 10 pages, 8 figures, submitted to Phys. Rev.

    Front propagation into unstable and metastable states in Smectic C* liquid crystals: linear and nonlinear marginal stability analysis

    Get PDF
    We discuss the front propagation in ferroelectric chiral smectics (SmC*) subjected to electric and magnetic fields applied parallel to smectic layers. The reversal of the electric field induces the motion of domain walls or fronts that propagate into either an unstable or a metastable state. In both regimes, the front velocity is calculated exactly. Depending on the field, the speed of a front propagating into the unstable state is given either by the so-called linear marginal stability velocity or by the nonlinear marginal stability expression. The cross-over between these two regimes can be tuned by a magnetic field. The influence of initial conditions on the velocity selection problem can also be studied in such experiments. SmC^* therefore offers a unique opportunity to study different aspects of front propagation in an experimental system

    Fixed-Node Monte Carlo Calculations for the 1d Kondo Lattice Model

    Get PDF
    The effectiveness of the recently developed Fixed-Node Quantum Monte Carlo method for lattice fermions, developed by van Leeuwen and co-workers, is tested by applying it to the 1D Kondo lattice, an example of a one-dimensional model with a sign problem. The principles of this method and its implementation for the Kondo Lattice Model are discussed in detail. We compare the fixed-node upper bound for the ground state energy at half filling with exact-diagonalization results from the literature, and determine several spin correlation functions. Our `best estimates' for the ground state correlation functions do not depend sensitively on the input trial wave function of the fixed-node projection, and are reasonably close to the exact values. We also calculate the spin gap of the model with the Fixed-Node Monte Carlo method. For this it is necessary to use a many-Slater-determinant trial state. The lowest-energy spin excitation is a running spin soliton with wave number pi, in agreement with earlier calculations.Comment: 19 pages, revtex, contribution to Festschrift for Hans van Leeuwe

    Fronts with a Growth Cutoff but Speed Higher than vv^*

    Get PDF
    Fronts, propagating into an unstable state ϕ=0\phi=0, whose asymptotic speed vasv_{\text{as}} is equal to the linear spreading speed vv^* of infinitesimal perturbations about that state (so-called pulled fronts) are very sensitive to changes in the growth rate f(ϕ)f(\phi) for ϕ1\phi \ll 1. It was recently found that with a small cutoff, f(ϕ)=0f(\phi)=0 for ϕ<ϵ\phi < \epsilon, vasv_{\text{as}} converges to vv^* very slowly from below, as ln2ϵ\ln^{-2} \epsilon. Here we show that with such a cutoff {\em and} a small enhancement of the growth rate for small ϕ\phi behind it, one can have vas>vv_{\text{as}} > v^*, {\em even} in the limit ϵ0\epsilon \to 0. The effect is confirmed in a stochastic lattice model simulation where the growth rules for a few particles per site are accordingly modified.Comment: 4 pages, 4 figures, to appear in Rapid Comm., Phys. Rev.

    Shift in the velocity of a front due to a cut-off

    Full text link
    We consider the effect of a small cut-off epsilon on the velocity of a traveling wave in one dimension. Simulations done over more than ten orders of magnitude as well as a simple theoretical argument indicate that the effect of the cut-off epsilon is to select a single velocity which converges when epsilon tends to 0 to the one predicted by the marginal stability argument. For small epsilon, the shift in velocity has the form K(log epsilon)^(-2) and our prediction for the constant K agrees very well with the results of our simulations. A very similar logarithmic shift appears in more complicated situations, in particular in finite size effects of some microscopic stochastic systems. Our theoretical approach can also be extended to give a simple way of deriving the shift in position due to initial conditions in the Fisher-Kolmogorov or similar equations.Comment: 12 pages, 3 figure

    New exact fronts for the nonlinear diffusion equation with quintic nonlinearities

    Full text link
    We consider travelling wave solutions of the reaction diffusion equation with quintic nonlinearities ut=uxx+μu(1u)(1+αu+βu2+γu3)u_t = u_{xx} + \mu u (1 -u ) ( 1 +\alpha u + \beta u^2 +\gamma u^3). If the parameters α,β\alpha , \beta and γ\gamma obey a special relation, then the criterion for the existence of a strong heteroclinic connection can be expressed in terms of two of these parameters. If an additional restriction is imposed, explicit front solutions can be obtained. The approach used can be extended to polynomials whose highest degree is odd.Comment: Revtex, 5 page

    On the validity of the linear speed selection mechanism for fronts of the nonlinear diffusion equation

    Full text link
    We consider the problem of the speed selection mechanism for the one dimensional nonlinear diffusion equation ut=uxx+f(u)u_t = u_{xx} + f(u). It has been rigorously shown by Aronson and Weinberger that for a wide class of functions ff, sufficiently localized initial conditions evolve in time into a monotonic front which propagates with speed cc^* such that 2f(0)c<2sup(f(u)/u)2 \sqrt{f'(0)} \leq c^* < 2 \sqrt{\sup(f(u)/u)}. The lower value cL=2f(0)c_L = 2 \sqrt{f'(0)} is that predicted by the linear marginal stability speed selection mechanism. We derive a new lower bound on the the speed of the selected front, this bound depends on ff and thus enables us to assess the extent to which the linear marginal selection mechanism is valid.Comment: 9 pages, REVTE

    Multiple Front Propagation Into Unstable States

    Full text link
    The dynamics of transient patterns formed by front propagation in extended nonequilibrium systems is considered. Under certain circumstances, the state left behind a front propagating into an unstable homogeneous state can be an unstable periodic pattern. It is found by a numerical solution of a model of the Fr\'eedericksz transition in nematic liquid crystals that the mechanism of decay of such periodic unstable states is the propagation of a second front which replaces the unstable pattern by a another unstable periodic state with larger wavelength. The speed of this second front and the periodicity of the new state are analytically calculated with a generalization of the marginal stability formalism suited to the study of front propagation into periodic unstable states. PACS: 47.20.Ky, 03.40.Kf, 47.54.+rComment: 12 page

    Perturbative Linearization of Reaction-Diffusion Equations

    Full text link
    We develop perturbative expansions to obtain solutions for the initial-value problems of two important reaction-diffusion systems, viz., the Fisher equation and the time-dependent Ginzburg-Landau (TDGL) equation. The starting point of our expansion is the corresponding singular-perturbation solution. This approach transforms the solution of nonlinear reaction-diffusion equations into the solution of a hierarchy of linear equations. Our numerical results demonstrate that this hierarchy rapidly converges to the exact solution.Comment: 13 pages, 4 figures, latex2

    Streamer Propagation as a Pattern Formation Problem: Planar Fronts

    Get PDF
    Streamers often constitute the first stage of dielectric breakdown in strong electric fields: a nonlinear ionization wave transforms a non-ionized medium into a weakly ionized nonequilibrium plasma. New understanding of this old phenomenon can be gained through modern concepts of (interfacial) pattern formation. As a first step towards an effective interface description, we determine the front width, solve the selection problem for planar fronts and calculate their properties. Our results are in good agreement with many features of recent three-dimensional numerical simulations.Comment: 4 pages, revtex, 3 ps file
    corecore