59,937 research outputs found
Thermodynamics of Dyonic Lifshitz Black Holes
Black holes with asymptotic anisotropic scaling are conjectured to be gravity
duals of condensed matter system close to quantum critical points with
non-trivial dynamical exponent z at finite temperature. A holographic
renormalization procedure is presented that allows thermodynamic potentials to
be defined for objects with both electric and magnetic charge in such a way
that standard thermodynamic relations hold. Black holes in asymptotic Lifshitz
spacetimes can exhibit paramagnetic behavior at low temperature limit for
certain values of the critical exponent z, whereas the behavior of AdS black
holes is always diamagnetic.Comment: 26 pages, 4 figure
Interval total colorings of graphs
A total coloring of a graph is a coloring of its vertices and edges such
that no adjacent vertices, edges, and no incident vertices and edges obtain the
same color. An \emph{interval total -coloring} of a graph is a total
coloring of with colors such that at least one vertex or edge
of is colored by , , and the edges incident to each vertex
together with are colored by consecutive colors, where
is the degree of the vertex in . In this paper we investigate
some properties of interval total colorings. We also determine exact values of
the least and the greatest possible number of colors in such colorings for some
classes of graphs.Comment: 23 pages, 1 figur
Influence of randomly distributed magnetic nanoparticles on surface superconductivity in Nb films
We report on combined resistance and magnetic measurements in a hybrid
structure (HS) of randomly distributed anisotropic CoPt magnetic nanoparticles
(MN) embedded in a 160 nm Nb thick film. Our resistance measurements exhibited
a sharp increase at the magnetically determined bulk upper-critical fields
Hc2(T). Above these points the resistance curves are rounded, attaining the
normal state value at much higher fields identified as the surface
superconductivity fields Hc3(T). When plotted in reduced temperature units, the
characteristic field lines Hc3(T) of the HS and of a pure Nb film, prepared at
exactly the same conditions, coincide for H10 kOe
they strongly segregate. Interestingly, the characteristic value H=10 kOe is
equal to the saturation field of the MN. The behavior mentioned above is
observed only for the case where the field is normal to the HS, while is absent
when the field is parallel to the film. Our experimental results suggest that
the observed enhancement of surface superconductivity field Hc3(T) is possibly
due to the not uniform local reduction of the external magnetic field by the
dipolar fields of the MN.Comment: to be published in Phys. Rev.
Emission Characteristics of the Projectile Fragments at Relativistic Energy
A projectile (84^Kr_36) having kinetic energy around 1 A GeV was used to
expose NIKFI BR-2 emulsion target. A total of 700 inelastic events are used in
the present studies on projectile fragments. The emission angle of the
projectile fragments are strongly affected by charge of the other projectile
fragments emitted at same time with different emission angle is observed. The
angular distribution studies show symmetrical nature for lighter charge
projectile fragments. The symmetrical nature decreased with the charge of
projectile fragments. At ~4o of emission angle for double charge projectile
fragments, the momentum transfer during interaction is similar for various
target species of emulsion were observed. We also observed a small but
significant amplitude peaks on both side of the big peak for almost all light
charge projectile fragments having different delta angle values. It reflects
that there are few percent of projectile fragments that are coming from the
decay of heavy projectile fragments or any other process.Comment: 32 pages, 17 Figure
Holographic Symmetry-Breaking Phases in AdS/CFT
In this note we study the symmetry-breaking phases of 3D gravity coupled to
matter. In particular, we consider black holes with scalar hair as a model of
symmetry-breaking phases of a strongly coupled 1+1 dimensional CFT. In the case
of a discrete symmetry, we show that these theories admit metastable phases of
broken symmetry and study the thermodynamics of these phases. We also
demonstrate that the 3D Einstein-Maxwell theory shows continuous symmetry
breaking at low temperature. The apparent contradiction with the
Coleman-Mermin-Wagner theorem is discussed.Comment: 15 pages, 7 figur
Inclusive and Direct Photons in S + Au Central Collisions at 200A GeV/c
A hadron and string cascade model, JPCIAE, which is based on LUND string
model, PYTHIA event generator especially, is used to study both inclusive
photon production and direct photon production in 200A GeV S + Au central
collisions. The model takes into account the photon production from the
partonic QCD scattering process, the hadronic final-state interaction, and the
hadronic decay and deals with them consistently. The results of JPCIAE model
reproduce successfully both the WA93 data of low p_T inclusive photon
distribution and the WA80 data of transverse momentum dependent upper limit of
direct photon. The photon production from different decay channels is
investigated for both direct and inclusive photons. We have discussed the
effects of the partonic QCD scattering and the hadronic final-state interaction
on direct photon production as well.Comment: 6 pages with 5 figure
Charged Magnetic Brane Solutions in AdS_5 and the fate of the third law of thermodynamics
We construct asymptotically AdS_5 solutions to 5-dimensional Einstein-Maxwell
theory with Chern-Simons term which are dual to 4-dimensional gauge theories,
including N=4 SYM theory, in the presence of a constant background magnetic
field B and a uniform electric charge density \rho. For the solutions
corresponding to supersymmetric gauge theories, we find numerically that a
small magnetic field causes a drastic decrease in the entropy at low
temperatures. The near-horizon AdS_2 \times R^3 geometry of the purely
electrically charged brane thus appears to be unstable under the addition of a
small magnetic field. Based on this observation, we propose a formulation of
the third law of thermodynamics (or Nernst theorem) that can be applied to
black holes in the AdS/CFT context.
We also find interesting behavior for smaller, non-supersymmetric, values of
the Chern-Simons coupling k. For k=1 we exhibit exact solutions corresponding
to warped AdS_3 black holes, and show that these can be connected to
asymptotically AdS_5 spacetime. For k\leq 1 the entropy appears to go to a
finite value at extremality, but the solutions still exhibit a mild singularity
at strictly zero temperature. In addition to our numerics, we carry out a
complete perturbative analysis valid to order B^2, and find that this
corroborates our numerical results insofar as they overlap.Comment: 45 pages v2: added note about subsequent results found in
arXiv:1003.130
Monopoles and Holography
We present a holographic theory in AdS_4 whose zero temperature ground state
develops a crystal structure, spontaneously breaking translational symmetry.
The crystal is induced by a background magnetic field, but requires no chemical
potential. This lattice arises from the existence of 't Hooft-Polyakov monopole
solitons in the bulk which condense to form a classical object known as a
monopole wall. In the infra-red, the magnetic field is screened and there is an
emergent SU(2) global symmetry.Comment: 33 pages, 16 figures; v2: ref adde
Local three-nucleon interaction from chiral effective field theory
The three-nucleon (NNN) interaction derived within the chiral effective field
theory at the next-to-next-to-leading order (N2LO) is regulated with a function
depending on the magnitude of the momentum transfer. The regulated NNN
interaction is then local in the coordinate space, which is advantages for some
many-body techniques. Matrix elements of the local chiral NNN interaction are
evaluated in a three-nucleon basis. Using the ab initio no-core shell model
(NCSM) the NNN matrix elements are employed in 3H and 4He bound-state
calculations.Comment: 17 pages, 9 figure
Ordering in Two-Dimensional Ising Models with Competing Interactions
We study the 2D Ising model on a square lattice with additional non-equal
diagonal next-nearest neighbor interactions. The cases of classical and quantum
(transverse) models are considered. Possible phases and their locations in the
space of three Ising couplings are analyzed. In particular, incommensurate
phases occurring only at non-equal diagonal couplings, are predicted. We also
analyze a spin-pseudospin model comprised of the quantum Ising model coupled to
XY spin chains in a particular region of interactions, corresponding to the
Ising sector's super-antiferromagnetic (SAF) ground state. The spin-SAF
transition in the coupled Ising-XY model into a phase with co-existent SAF
Ising (pseudospin) long-range order and a spin gap is considered. Along with
destruction of the quantum critical point of the Ising sector, the phase digram
of the Ising-XY model can also demonstrate a re-entrance of the spin-SAF phase.
A detailed study of the latter is presented. The mechanism of the re-entrance,
due to interplay of interactions in the coupled model, and the conditions of
its appearance are established. Applications of the spin-SAF theory for the
transition in the quarter-filled ladder compound NaV2O5 are discussed.Comment: Minor revisions and refs. added; published version of the invited
paper in a special issue of "Low Temp. Physics
- …
