1,068 research outputs found

    Recognizing recurrent neural networks (rRNN): Bayesian inference for recurrent neural networks

    Get PDF
    Recurrent neural networks (RNNs) are widely used in computational neuroscience and machine learning applications. In an RNN, each neuron computes its output as a nonlinear function of its integrated input. While the importance of RNNs, especially as models of brain processing, is undisputed, it is also widely acknowledged that the computations in standard RNN models may be an over-simplification of what real neuronal networks compute. Here, we suggest that the RNN approach may be made both neurobiologically more plausible and computationally more powerful by its fusion with Bayesian inference techniques for nonlinear dynamical systems. In this scheme, we use an RNN as a generative model of dynamic input caused by the environment, e.g. of speech or kinematics. Given this generative RNN model, we derive Bayesian update equations that can decode its output. Critically, these updates define a 'recognizing RNN' (rRNN), in which neurons compute and exchange prediction and prediction error messages. The rRNN has several desirable features that a conventional RNN does not have, for example, fast decoding of dynamic stimuli and robustness to initial conditions and noise. Furthermore, it implements a predictive coding scheme for dynamic inputs. We suggest that the Bayesian inversion of recurrent neural networks may be useful both as a model of brain function and as a machine learning tool. We illustrate the use of the rRNN by an application to the online decoding (i.e. recognition) of human kinematics

    Effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock. The VANISH Randomized Clinical Trial

    Get PDF
    IMPORTANCE: Norepinephrine is currently recommended as the first-line vasopressor in septic shock; however, early vasopressin use has been proposed as an alternative. OBJECTIVE: To compare the effect of early vasopressin vs norepinephrine on kidney failure in patients with septic shock. DESIGN, SETTING, AND PARTICIPANTS: A factorial (2×2), double-blind, randomized clinical trial conducted in 18 general adult intensive care units in the United Kingdom between February 2013 and May 2015, enrolling adult patients who had septic shock requiring vasopressors despite fluid resuscitation within a maximum of 6 hours after the onset of shock. INTERVENTIONS: Patients were randomly allocated to vasopressin (titrated up to 0.06 U/min) and hydrocortisone (n = 101), vasopressin and placebo (n = 104), norepinephrine and hydrocortisone (n = 101), or norepinephrine and placebo (n = 103). MAIN OUTCOMES AND MEASURES: The primary outcome was kidney failure-free days during the 28-day period after randomization, measured as (1) the proportion of patients who never developed kidney failure and (2) median number of days alive and free of kidney failure for patients who did not survive, who experienced kidney failure, or both. Rates of renal replacement therapy, mortality, and serious adverse events were secondary outcomes. RESULTS: A total of 409 patients (median age, 66 years; men, 58.2%) were included in the study, with a median time to study drug administration of 3.5 hours after diagnosis of shock. The number of survivors who never developed kidney failure was 94 of 165 patients (57.0%) in the vasopressin group and 93 of 157 patients (59.2%) in the norepinephrine group (difference, -2.3% [95% CI, -13.0% to 8.5%]). The median number of kidney failure-free days for patients who did not survive, who experienced kidney failure, or both was 9 days (interquartile range [IQR], 1 to -24) in the vasopressin group and 13 days (IQR, 1 to -25) in the norepinephrine group (difference, -4 days [95% CI, -11 to 5]). There was less use of renal replacement therapy in the vasopressin group than in the norepinephrine group (25.4% for vasopressin vs 35.3% for norepinephrine; difference, -9.9% [95% CI, -19.3% to -0.6%]). There was no significant difference in mortality rates between groups. In total, 22 of 205 patients (10.7%) had a serious adverse event in the vasopressin group vs 17 of 204 patients (8.3%) in the norepinephrine group (difference, 2.5% [95% CI, -3.3% to 8.2%]). CONCLUSIONS AND RELEVANCE: Among adults with septic shock, the early use of vasopressin compared with norepinephrine did not improve the number of kidney failure-free days. Although these findings do not support the use of vasopressin to replace norepinephrine as initial treatment in this situation, the confidence interval included a potential clinically important benefit for vasopressin, and larger trials may be warranted to assess this further. TRIAL REGISTRATION: clinicaltrials.gov Identifier: ISRCTN 20769191

    Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications.

    Get PDF
    Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylated DNA binding domain sequencing (MBD-seq). We applied all four methods to biological replicates of human embryonic stem cells to assess their genome-wide CpG coverage, resolution, cost, concordance and the influence of CpG density and genomic context. The methylation levels assessed by the two bisulfite methods were concordant (their difference did not exceed a given threshold) for 82% for CpGs and 99% of the non-CpG cytosines. Using binary methylation calls, the two enrichment methods were 99% concordant and regions assessed by all four methods were 97% concordant. We combined MeDIP-seq with methylation-sensitive restriction enzyme (MRE-seq) sequencing for comprehensive methylome coverage at lower cost. This, along with RNA-seq and ChIP-seq of the ES cells enabled us to detect regions with allele-specific epigenetic states, identifying most known imprinted regions and new loci with monoallelic epigenetic marks and monoallelic expression

    Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection

    Get PDF
    ZnO nanowires were produced using an electrospinning method and used in gas sensors for the detection of ethanol at 220 °C. This electrospinning technique allows the direct placement of ZnO nanowires during their synthesis to bridge the sensor electrodes. An excellent sensitivity of nearly 90% was obtained at a low ethanol concentration of 10 ppm, and the rest obtained at higher ethanol concentrations, up to 600 ppm, all equal to or greater than 90%

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note: updated version of arXiv:gr-qc/050809

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.

    The Tandem CARDs of NOD2: Intramolecular Interactions and Recognition of RIP2

    Get PDF
    Caspase recruitment domains (CARDs) are homotypic protein interaction modules that link the stimulus-dependent assembly of large signaling platforms such as inflammasomes to the activation of downstream effectors that often include caspases and kinases and thereby play an important role in the regulation of inflammatory and apoptotic signaling pathways. NOD2 belongs to the NOD-like (NLR) family of intracellular pattern recognition receptors (PRR) and induces activation of the NF-κB pathway in response to the recognition of bacterial components. This process requires the specific recognition of the CARD of the protein kinase RIP2 by the tandem CARDs of NOD2. Here we demonstrate that the tandem CARDs of NOD2 are engaged in an intramolecular interaction that is important for the structural stability of this region. Using a combination of ITC and pull-down experiments we identify distinct surface areas that are involved in the intramolecular tandem CARD interaction and the interaction with the downstream effector RIP2. Our findings indicate that while CARDa of NOD2 might be the primary binding partner of RIP2 the two CARDs of NOD2 do not act independently of one another but may cooperate to from a binding surface that is distinct from that of single CARDs

    CT Scan Screening for Lung Cancer: Risk Factors for Nodules and Malignancy in a High-Risk Urban Cohort

    Get PDF
    Low-dose computed tomography (CT) for lung cancer screening can reduce lung cancer mortality. The National Lung Screening Trial reported a 20% reduction in lung cancer mortality in high-risk smokers. However, CT scanning is extremely sensitive and detects non-calcified nodules (NCNs) in 24-50% of subjects, suggesting an unacceptably high false-positive rate. We hypothesized that by reviewing demographic, clinical and nodule characteristics, we could identify risk factors associated with the presence of nodules on screening CT, and with the probability that a NCN was malignant.We performed a longitudinal lung cancer biomarker discovery trial (NYU LCBC) that included low-dose CT-screening of high-risk individuals over 50 years of age, with more than 20 pack-year smoking histories, living in an urban setting, and with a potential for asbestos exposure. We used case-control studies to identify risk factors associated with the presence of nodules (n=625) versus no nodules (n=557), and lung cancer patients (n=30) versus benign nodules (n=128).The NYU LCBC followed 1182 study subjects prospectively over a 10-year period. We found 52% to have NCNs >4 mm on their baseline screen. Most of the nodules were stable, and 9.7% of solid and 26.2% of sub-solid nodules resolved. We diagnosed 30 lung cancers, 26 stage I. Three patients had synchronous primary lung cancers or multifocal disease. Thus, there were 33 lung cancers: 10 incident, and 23 prevalent. A sub-group of the prevalent group were stable for a prolonged period prior to diagnosis. These were all stage I at diagnosis and 12/13 were adenocarcinomas.NCNs are common among CT-screened high-risk subjects and can often be managed conservatively. Risk factors for malignancy included increasing age, size and number of nodules, reduced FEV1 and FVC, and increased pack-years smoking. A sub-group of screen-detected cancers are slow-growing and may contribute to over-diagnosis and lead-time biases
    corecore