207,350 research outputs found
Looking into DNA breathing dynamics via quantum physics
We study generic aspects of bubble dynamics in DNA under time dependent
perturbations, for example temperature change, by mapping the associated
Fokker-Planck equation to a quantum time-dependent Schroedinger equation with
imaginary time. In the static case we show that the eigenequation is exactly
the same as that of the -deformed nuclear liquid drop model, without the
issue of non-integer angular momentum. A universal breathing dynamics is
demonstrated by using an approximate method in quantum mechanics. The
calculated bubble autocorrelation function qualitatively agrees with
experimental data. Under time dependent modulations, utilizing the adiabatic
approximation, bubble properties reveal memory effects.Comment: 5 pages, 1 figur
TDRSS orbit determination using short baseline differenced carrier phase
This paper discusses a covariance study on the feasibility of using station-differenced carrier phase on short baselines to track the TDRSS satellites. Orbit accuracies for the TDRSS using station-differenced carrier phase data and range data collected from White Sands, NM are given for various configurations of ground stations and range data precision. A one-sigma-position position accuracy of 25 meters can be achieved using two orthogonal baselines of 100 km for the station-differenced phase data and range data with 1 m accuracy. Relevant configuration parameters for the tracking system and important sources of error are examined. The ability of these data to redetermine the position after a station keeping maneuver is addressed. The BRTS system, which is currently used for TDRSS orbit determination, is briefly described and its errors are given for comparison
Calculating the relative entropy of entanglement
We extend Vedral and Plenio's theorem (theorem 3 in Phys. Rev. A 57, 1619) to
a more general case, and obtain the relative entropy of entanglement for a
class of mixed states, this result can also follow from Rains' theorem 9 in
Phys. Rev. A 60, 179.Comment: 2 pages, RevTex, an important reference adde
Monte-Carlo approach to calculate the ionization of warm dense matter within particle-in-cell simulations
A physical model based on a Monte-Carlo approach is proposed to calculate the
ionization dynam- ics of warm dense matters (WDM) within particle-in-cell
simulations, and where the impact (col- lision) ionization (CI), electron-ion
recombination (RE) and ionization potential depression (IPD) by surrounding
plasmas are taken into consideration self-consistently. When compared with
other models, which are applied in the literature for plasmas near thermal
equilibrium, the temporal re- laxation of ionization dynamics can also be
simulated by the proposed model. Besides, this model is general and can be
applied for both single elements and alloys with quite different composi-
tions. The proposed model is implemented into a particle-in-cell (PIC) code,
with (final) ionization equilibriums sustained by competitions between CI and
its inverse process (i.e., RE). Comparisons between the full model and model
without IPD or RE are performed. Our results indicate that for bulk aluminium
in the WDM regime, i) the averaged ionization degree increases by including
IPD; while ii) the averaged ionization degree is significantly over estimated
when the RE is neglected. A direct comparison from the PIC code is made with
the existing models for the dependence of averaged ionization degree on thermal
equilibrium temperatures, and shows good agreements with that generated from
Saha-Boltzmann model or/and FLYCHK code.Comment: 7 pages, 4 figure
- …
