52,190 research outputs found

    Subsonic balance and pressure investigation of a 60 deg delta wing with leading edge devices

    Get PDF
    Low supersonic wave drag makes the thin highly swept delta wing the logical choice for use on aircraft designed for supersonic cruise. However, the high-lift maneuver capability of the aircraft is limited by severe induced-drag penalties attributed to loss of potential flow leading-edge suction. This drag increase may be alleviated through leading-edge flow control to recover lost aerodynamic thrust through either retention of attached leading-edge flow to higher angles of attack or exploitation of the increased suction potential of separation-induced vortex flow. A low-speed wind-tunnel investigation was undertaken to examine the high-lift devices such as fences, chordwise slots, pylon vortex generators, leading-edge vortex flaps, and sharp leading-edge extensions. The devices were tested individually and in combinations in an attempt to improve high-alpha drag performance with a minimum of low-alpha drag penalty. This report presents an analysis of the force, moment, and static pressure data obtained in angles of attack up to 23 deg, at Mach and Reynolds numbers of 0.16 and 3.85 x 10 to the 6th power per meter, respectively. The results indicate that all the devices produced drag and longitudinal/lateral stability improvements at high lift with, in most cases, minor drag penalties at low angles of attack

    Money, Credit, and Allocation Under Complete Dynamic Contracts and Incomplete Markets

    Get PDF
    We construct a dynamic heterogeneous-agent model with random uninsurable endowments. Two allocation mechanisms are considered, one with long-term complete credit arrangements under private information, and one with incomplete competitive markets. A role for money arises due to random limited participation. A Friedman rule is optimal in the first economy, and replicates a pure credit arrangement in the second. Computational results show that steady state allocations are quite different under the two arrangements, though the responses to changes in long-run inflation are similar.97-20

    Flat-plate drag measurements with vortex generators in turbulent boundary layer

    Get PDF
    Direct drag measurements were obtained on a flat plate with a spanwise row of vortex generators near the leading edge, to produce an array of stream wise vortices within the approaching turbulent boundary layer. The object was to explore the possibility of modifying the large scale structure of the boundary layer through embedded longitudinal vortices with a view to obtaining a reduction in wall shear. Both obstacle and vane type vortex generators were tested at free stream velocities 40 ft/sec to 130 ft/sec corresponding to plate length Reynolds no. 0.3 million to 0.8 million with a nominal boundary layer thickness of approximately 0.6 in. at the leading edge. A few vortex generator configurations were tested both on and off the plate to measure the total drag as well as the plate drag alone. The obstacle type devices reduced the plate drag, indicating that the wake momentum defect predominated even in the presence of streamwise vortices. The vane type vortex generators however always increased the plate drag

    Characterization of erosion of metallic materials under cavitation attack in a mineral oil

    Get PDF
    Cavitation erosion and erosion rates of eight metallic materials representing three crystal structures were studied using a 20-kHz ultrasonic magnetostrictive oscillator in viscous mineral oil. The erosion rates of the metals with an fcc matrix were 10 to 100 times higher than that of an hcp-matrix titanium alloy. The erosion rates of iron and molybdenum, with bcc matrices, were higher than that of the titanium alloy but lower than those of the fcc metals. Scanning electron microscopy indicates that the cavitation pits are initially formed at the grain boundaries and precipitates and that the pits that formed at the triple points grew faster than the others. Transcrystalline craters formed by cavitation attack over the surface of grains and roughened the surfaces by multiple slip and twinning. Surface roughness measurements show that the pits that formed over the grain boundaries deepended faster than other pits. Computer analysis revealed that a geometric expression describes the nondimensional erosion curves during the time period 0.5 t(0) t 2.5 t(0), where t(0) is the incubation period. The fcc metals had very short incubation periods; the titanium alloy had the longest incubation period

    Irrigation management research in Sri Lanka: A review of selected literature. Occasional paper. Occasional paper

    Get PDF
    Irrigation management / Research / Irrigation systems / Rehabilitation / Financing / Resource management / Policy / Farmer participation / Farmer-agency interactions / Sri Lanka

    Solid spherical glass particle impingement studies of plastic materials

    Get PDF
    Erosion experiments on polymethyl methacrylate (PMMA), polycarbonate, and polytetrafluoroethylene (PTFE) were conducted with spherical glass beads impacting at normal incidence. Optical and scanning electron microscopic studies and surface profile measurements were made on specimens at predetermined test intervals. During the initial stage of damage to PMMA and polycarbonate, material expands or builds up above the original surface. However, this buildup disappears as testing progresses. Little or no buildup was observed on PTFE. PTFE is observed to be the most resistant material to erosion and PMMA the least. At low impact pressures, material removal mechanisms are believed to be similar to those for metallic materials. However, at higher pressures, surface melting is indicated at the center of impact. Deformation and fatigue appear to play major roles in the material removal process with possible melting or softening

    The effects of atmospheric refraction on the accuracy of laser ranging systems

    Get PDF
    Correction formulas derived by Saastamoinen and Marini, and the ray traces through the refractivity profiles all assume a spherically symmetric refractivity profile. The errors introduced by this assumption were investigated by ray tracing through three-dimensional profiles. The results of this investigation indicate that the difference between ray traces through the spherically symmetric and three-dimensional profiles is approximately three centimeters at 10 deg and decreases to less than one half of a centimeter at 80 deg. If the accuracy desired in future laser ranging systems is less than a few centimeters, Saastamoinen and Marini's formulas must be altered to account for the fact that the refractivity profile is not spherically symmetric

    Magnetic bearings for free-piston Stirling engines

    Get PDF
    The feasibility and efficacy of applying magnetic bearings to free-piston Stirling-cycle power conversion machinery currently being developed for long-term space missions are assessed. The study was performed for a 50-kWe Reference Stirling Space Power Converter (RSSPC) which currently uses hydrostatic gas bearings to support the reciprocating displacer and power piston assemblies. Active magnetic bearings of the attractive electromagnetic type are feasible for the RSSPC power piston. Magnetic support of the displacer assembly would require unacceptable changes to the design of the current RSSPC. However, magnetic suspension of both displacer and power piston is feasible for a relative-displacer version of the RSSPC. Magnetic suspension of the RSSPC power piston can potentially increase overall efficiency by 0.5 to 1 percent (0.1 to 0.3 efficiency points). Magnetic bearings will also overcome several operational concerns associated with hydrostatic gas bearing systems. These advantages, however, are accompanied by a 5 percent increase in specific mass of the RSSPC
    corecore