293 research outputs found
Effects of Rotation and Relativistic Charge Flow on Pulsar Magnetospheric Structure
We propose an analytical 3-D model of the open field-line region of a neutron
star (NS) magnetosphere. We construct an explicit analytic solution for
arbitrary obliquity (angle between the rotation and magnetic axes)
incorporating the effects of magnetospheric rotation, relativistic flow of
charges (e.g. primary electron beam) along the open field lines, and E X B
drift of these charges. Our solution employs the space-charge-limited
longitudinal current calculated in the electrodynamic model of Muslimov &
Tsygan (1992) and is valid up to very high altitudes nearly approaching the
light cylinder. We assume that in the innermost magnetosphere, the NS magnetic
field can be well represented by a static magnetic dipole configuration. At
high altitudes the open magnetic field lines significantly deviate from those
of a static dipole and tend to focus into a cylindrical bundle, swept back in
the direction opposite to the rotation, and also bent towards the rotational
equator. We briefly discuss some implications of our study to spin-powered
pulsars.Comment: 24 pages, 3 figures, accepted for publication in Ap
Optimal battery charge/discharge strategies for prosumers and suppliers
We discuss the application of classical variational methods to optimal charging/discharging strategies for a prosumer or storage supplier, where the price of electrical power is known in advance. We outline how a classical calculus of variations approach can be applied to two related problems: (i) how can a prosumer minimise the cost of charging/discharging a battery, when the price of electrical power is known throughout the charging/discharging period? and (ii) how can an electricity supplier incentivise desired prosumer/storage supplier behaviour by adjusting the price
On the Ionisation of Warm Opaque Interstellar Clouds and the Intercloud Medium
In this paper we use a number of observations to construct an integrated
picture of the ionisation in the interiors of quiescent warm opaque
interstellar clouds and in the intercloud medium (ICM) outside dense HII
regions and hot dilute bubbles. Our main conclusion is that within 1kpc
of the sun the ionisation rate of hydrogen per unit volume in both the
interiors of such clouds and in the ICM is independent of the local density of
neutral hydrogen, and varies with position by less than 20 per cent.
These conclusions strongly favour the decaying neutrino hypothesis for the
ionisation of the interstellar medium in these regions.
Our analysis is based on a variety of observations, of which the most
remarkable is the discovery by Spitzer and Fitzpatrick (1993) that, in the four
slowly moving clouds along the line of sight to the halo star HD93521, the
column densities of both SII and CII, which individually range over a
factor 4, are proportional to the column density of HI to within 20
per cent. This proportionality is used to show that the free electrons exciting
the CII to CII are located mainly in the interiors of the clouds, rather
than in their skins, despite the large opacity of the clouds to Lyman continuum
radiation. The same conclusion also follows more unambiguously from the low
value of the H flux in this direction which was found by Reynolds
(1996) in unpublished observations.
These results are then used, in conjunction with observations of three pulsar
parallaxes and dispersion measures, and with data on HeI, NII and OI line
emissions, to constrain the ionisation of H, He, N and O and the flux of Lyman
continuum photons from O stars in the ICM.Comment: 16 pages, no figures, Latex fil
Constraints on Stirring and Dissipation of MHD Turbulence in Molecular Clouds
We discuss constraints on the rates of stirring and dissipation of MHD
turbulence in molecular clouds. Recent MHD simulations suggest that turbulence
in clouds decays rapidly, thus providing a significant source of energy input,
particularly if driven at small scales by, for example, bipolar outflows. We
quantify the heating rates by combining the linewidth-size relations, which
describe global cloud properties, with numerically determined dissipation
rates. We argue that, if cloud turbulence is driven on small internal scales,
the CO flux (enhanced by emission from weakly supersonic shocks) will be
much larger than observed; this, in turn, would imply excitation temperatures
significantly above observed values. We reach two conclusions: (1) small-scale
driving by bipolar outflows cannot possibly account for cloud support and yield
long-lived clouds, unless the published MHD dissipation rates are seriously
overestimated; (2) driving on large scales (comparable to the cloud size) is
much more viable from an energetic standpoint, and if the actual net
dissipation rate is only slightly lower than what current MHD simulations
estimate, then the observationally inferred lifetimes and apparent virial
equilibrium of molecular clouds can be explained.Comment: 5 pages, 1 figure. To appear in ApJ (2001 April 10
The Inability of Ambipolar Diffusion to set a Characteristic Mass Scale in Molecular Clouds
We investigate the question of whether ambipolar diffusion (ion-neutral
drift) determines the smallest length and mass scale on which structure forms
in a turbulent molecular cloud. We simulate magnetized turbulence in a mostly
neutral, uniformly driven, turbulent medium, using a three-dimensional,
two-fluid, magnetohydrodynamics (MHD) code modified from Zeus-MP. We find that
substantial structure persists below the ambipolar diffusion scale because of
the propagation of compressive slow MHD waves at smaller scales. Contrary to
simple scaling arguments, ambipolar diffusion thus does not suppress structure
below its characteristic dissipation scale as would be expected for a classical
diffusive process. We have found this to be true for the magnetic energy,
velocity, and density. Correspondingly, ambipolar diffusion leaves the clump
mass spectrum unchanged. Ambipolar diffusion appears unable to set a
characteristic scale for gravitational collapse and star formation in turbulent
molecular clouds.Comment: 16 pages, 5 figures. ApJ accepte
Angular Momentum Transfer in Star-Discs Encounters: The Case of Low-Mass Discs
A prerequisite for the formation of stars and planetary systems is that
angular momentum is transported in some way from the inner regions of the
accretion disc. Tidal effects may play an important part in this angular
momentum transport. Here the angular momentum transfer in an star-disc
encounter is investigated numerically for a variety of encounter parameters in
the case of low mass discs. Although good agreement is found with analytical
results for the entire disc, the loss {\it inside} the disc can be up to an
order of magnitude higher than previously assumed. The differences in angular
momentum transport by secondaries on a hyperbolic, parabolic and elliptical
path are shown, and it is found that a succession of distant encounters might
be equally, if not more, successful in removing angular momentum than single
close encounter.Comment: 11pages, 8 figures, 1 tabl
Do Proto-Jovian Planets Drive Outflows?
We discuss the possibility that gaseous giant planets drive strong outflows
during early phases of their formation. We consider the range of parameters
appropriate for magneto-centrifugally driven stellar and disk outflow models
and find that if the proto-Jovian planet or accretion disk had a magnetic field
of >~ 10 Gauss and moderate mass inflow rates through the disk of less than
10^-7 M_J/yr that it is possible to drive an outflow. Estimates based both on
scaling from empirical laws observed in proto-stellar outflows and the
magneto-centrigugal disk and stellar+disk wind models suggest that winds with
mass outflow rates of 10^-8 M_J/yr and velocities of order ~ 20 km/s could be
driven from proto-Jovian planets. Prospects for detection and some implications
for the formation of the solar system are briefly discussed.Comment: AAS Latex, accepted for Ap
On the Timescale for the Formation of Protostellar Cores in Magnetic Interstellar Clouds
We revisit the problem of the formation of dense protostellar cores due to
ambipolar diffusion within magnetically supported molecular clouds, and derive
an analytical expression for the core formation timescale. The resulting
expression is similar to the canonical expression = t_{ff}^2/t_{ni} ~ 10 t_{ni}
(where t_{ff} is the free-fall time and t_{ni} is the neutral-ion collision
time), except that it is multiplied by a numerical factor C(\mu_{c0}), where
\mu_{c0} is the initial central mass-to-flux ratio normalized to the critical
value for gravitational collapse. C(\mu_{c0}) is typically ~ 1 in highly
subcritical clouds (\mu_{c0} << 1), although certain conditions allow
C(\mu_{c0}) >> 1. For clouds that are not highly subcritical, C(\mu_{c0}) can
be much less than unity, with C(\mu_{c0}) --> 0 for \mu_{c0} --> 1,
significantly reducing the time required to form a supercritical core. This,
along with recent observations of clouds with mass-to-flux ratios close to the
critical value, may reconcile the results of ambipolar diffusion models with
statistical analyses of cores and YSO's which suggest an evolutionary timescale
\~ 1 Myr for objects of mean density ~ 10^4 cm^{-3}. We compare our analytical
relation to the results of numerical simulations, and also discuss the effects
of dust grains on the core formation timescale.Comment: 11 pages, 2 figures, accepted for publication in the Astrophysical
Journa
Unstable Disk Galaxies. I. Modal Properties
I utilize the Petrov-Galerkin formulation and develop a new method for
solving the unsteady collisionless Boltzmann equation in both the linear and
nonlinear regimes. In the first order approximation, the method reduces to a
linear eigenvalue problem which is solved using standard numerical methods. I
apply the method to the dynamics of a model stellar disk which is embedded in
the field of a soft-centered logarithmic potential. The outcome is the full
spectrum of eigenfrequencies and their conjugate normal modes for prescribed
azimuthal wavenumbers. The results show that the fundamental bar mode is
isolated in the frequency space while spiral modes belong to discrete families
that bifurcate from the continuous family of van Kampen modes. The population
of spiral modes in the bifurcating family increases by cooling the disk and
declines by increasing the fraction of dark to luminous matter. It is shown
that the variety of unstable modes is controlled by the shape of the dark
matter density profile.Comment: Accepted for publication in The Astrophysical Journa
Gravitational Instability in Radiation Pressure Dominated Backgrounds
I consider the physics of gravitational instabilities in the presence of
dynamically important radiation pressure and gray radiative diffusion, governed
by a constant opacity, kappa. For any non-zero radiation diffusion rate on an
optically-thick scale, the medium is unstable unless the classical gas-only
isothermal Jeans criterion is satisfied. When diffusion is "slow," although the
dynamical Jeans instability is stabilized by radiation pressure on scales
smaller than the adiabatic Jeans length, on these same spatial scales the
medium is unstable to a diffusive mode. In this regime, neglecting gas
pressure, the characteristic timescale for growth is independent of spatial
scale and given by (3 kappa c_s^2)/(4 pi G c), where c_s is the adiabatic sound
speed. This timescale is that required for a fluid parcel to radiate away its
thermal energy content at the Eddington limit, the Kelvin-Helmholz timescale
for a radiation pressure supported self-gravitating object. In the limit of
"rapid" diffusion, radiation does nothing to suppress the Jeans instability and
the medium is dynamically unstable unless the gas-only Jeans criterion is
satisfied. I connect with treatments of Silk damping in the early universe. I
discuss several applications, including photons diffusing in regions of extreme
star formation (starburst galaxies & pc-scale AGN disks), and the diffusion of
cosmic rays in normal galaxies and galaxy clusters. The former (particularly,
starbursts) are "rapidly" diffusing and thus cannot be supported against
dynamical instability in the linear regime by radiation pressure alone. The
latter are more nearly "slowly" diffusing. I speculate that the turbulence in
starbursts may be driven by the dynamical coupling between the radiation field
and the self-gravitating gas, perhaps mediated by magnetic fields. (Abridged)Comment: 15 pages; accepted to Ap
- …