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Abstract We discuss the application of classical variational methods to optimal charging/discharging strate-
gies for a prosumer or storage supplier, where the price of electrical power is known in advance. We outline
how a classical calculus of variations approach can be applied to two related problems: (i) how can a prosumer
minimise the cost of charging/discharging a battery, when the price of electrical power is known throughout
the charging/discharging period? and (ii) how can an electricity supplier incentivise desired prosumer/storage
supplier behaviour by adjusting the price?

Keywords variational methods, prosumer, battery, storage, smart grid

1 Introduction

To meet the challenges of a low-carbon future incorporating significant renewable energy, there has been
growing interest in the role of energy/electricity storage in the management of power systems, both (i) as
an aid to short-term stabilization of the power system; and (ii) as means to handle mismatches between
supply and demand. For example, in a recent report [9] from a UK perspective, the Institution of Mechanical
Engineers calls for greater R&D investment in energy storage (in the heat, transport and electricity sectors)
to meet the problem of intermittency and seasonal variability of energy obtained from wind, sun, tides and
waves. Similarly, in 2013 the EU identified energy storage as a key area for development [5].

Moreover, two key challenges in energy research are (i) to understand the interplay between the electricity
market and electricity generation; and (ii) to understand the dynamics of smart grids consisting of a network
of prosumers (producers/consumers) interacting in the physical, cyber and social layers. (See, in particular,
the contribution by Etorre Bompard in [2].)

In line with these trends, there has also been mathematical research in the field of energy storage. Cruise
et al use stochastic control methods to understand how a storage supplier might optimise the use of storage
for arbitrage purposes with particular reference to hydroelectric storage [4], and Li et al have studied the
possibility of electric vehicles facilitating renewable energy integration in the power system [8]. The general
impact of electric vehicles on the grid has been investigated by Lukszo and co-workers [7, 13, 14].

Whilst there are many possible approaches to energy storage (compressed air, hydroelectric storage,
flywheels, hydrogen etc.), we restrict this paper to electricity storage in fuel cells/batteries, which are charged
from the grid and discharged to the grid, by, for example, a commercial storage supplier or a prosumer with,
say, a vehicle battery. There are many types of batteries currently in use or being researched and developed
for the future, e.g., Lead-acid, Li Ion, etc., and in this article we do not distinguish between the battery
types.

A key claim made by the Institution of Mechanical Engineers report is that “energy storage cannot be
incentivised by conventional market mechanisms”. It is therefore useful to investigate to what extent it might
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be possible to incentivise energy storage through the conventional market mechanism of price, and this is
one motivation for the study of battery charging/discharging presented in this paper.

The modelling of batteries is a well-established and growing field. One approach is electrochemical and
thermal modelling of the electrolyte, electrodes and their interaction (sometimes at nano-scales [12]); another
is phenomenological or dynamical macroscale modelling of battery behaviour, often based on equivalent cir-
cuit diagrams [11]. Battery models can be elaborate (see for example, [3] for a successful but mathematically
complex example), and only the very simplest (and largely unrealistic) models are amenable to analysis.
Hence most studies use numerical simulation (often using software packages such as Matlab and Maple).
However, simple battery models are successfully used to model charging of electric vehicles [1, 6, 11].

In this paper we consider the following problem. Given an agent (e.g., a prosumer or a storage supplier)
with a storage battery (perhaps in an electric/hybrid vehicle) and an exogenous price p(t), what is the
optimal charging/discharging function to minimise cost and how should the price be chosen to induce a
given behaviour in the prosumer?

To be specific, we consider battery models with state variable S, the State of Charge (SOC) of the battery.
The variable S varies continuously between S = 0, when the battery is fully discharged, and S = 1, when
the battery is fully charged. We ignore other state variables used in some battery models, in particular the
so-called Depth of Charge and the battery temperature. (In some models battery temperature is a dynamic
variable determined by the ambient temperature and other model variables; in any case it is clearly an
important variable to control to prevent gassing, damage to the battery and fire.) We assume that the
permitted charging regimes conform to the manufacturer’s specification to avoid hazards and to minimize
battery degradation. We consider a fixed time interval [ts, te] over which there is an applied current I(t)
and voltage V (t). We adopt the convention that I > 0 when the battery is charging and I < 0 when the
battery is discharging. Note that I and V cannot necessarily be determined independently. Certainly the
power relation W (t) = V (t)I(t) holds, but the precise relation between I, V and W will be dependent on
the battery model chosen.

2 Cost functional and fundamental questions

Let us consider a model problem of a single agent in a fixed market. The agent may be a prosumer or a
storage supplier, since we envisage the agent buying and selling electricity from and to the grid. We assume
the agent is a price taker, and the price, which may be regarded as an exogenous variable, is set by the
electricity supplier (which might be a transmission, distribution or retail company). In general we might
consider two prices, given in, say, £ per KWh: po(t), the offer price, i.e., the price the agent buys electricity,
and pb(t), the bid price, i.e., the price the agent sells electricity. In general pb(t) ≤ po(t), but in this paper we
consider the friction-free case po(t) = pb(t) = p(t). We also assume forward pricing, so that p(t) is a known
function on the whole of the interval [ts, te], and that the agent has sufficient prior knowledge to optimise
charging/discharging during the period [ts, te].

The total cost of charging/discharging a battery for the price function p(t) and power W (t) is given by
the functional

C =

∫ te

ts

p(t)W (t) dt , (1)

where W (t) = V (t)I(t). The goal is to minimize C subject to any constraints such as maximum/minimum
current, voltage, and power that are imposed by the battery manufacturer, the electricity supplier etc. Note
that it possible to include a discount factor e−rt in the integrand in equation (1), where r is the discount
rate, but we have not done so because of the short timescales envisaged in applications of the model.

The following are key questions that any mathematical approach would attempt to answer.

1. For a given price p(t), what is the optimal charging function S(t) within a given class of approved charging
functions, e.g., satisfying given constraints? Is the optimal charging function unique?

2. For a given charging function S(t), what is the price function p(t) for which the given S(t) is the optimal
charging function for p(t)? And is p(t) unique?

3. For a given power function W (t), what is the charging function S(t) inducing W (t), and is it unique and
in a given class of approved charging functions?
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4. For a given power function W (t), what is the price function p(t) that has optimal power function W (t)?
5. What is the minimum cost in each of these cases?

As we shall see in the next section, we may use a classical variational approach to answer some of these
questions.

3 A classical calculus of variations approach

Let us outline how the questions above may be answered using variational methods. We assume that the
voltage V (t) may be expressed in terms of the State of Charge S(t) and its derivative Ṡ(t), and that all
functions are sufficiently smooth for the relevant equations to be well defined and to have solutions of the
required degree of smoothness. We note that I = QmaxṠ where Qmax is the maximum charge that battery
can hold. Our approach does not exclude other state variables (such as temperature), but here we assume
that any such variables are completely determined at time t by additional parameters and by the State of
Charge S(t) and its derivative Ṡ(t). Thus a charging regime is determined completely by the State of Charge
as a function of time and we may write W (t) = G(S, Ṡ), for some function G. Then equation (1) becomes

C =

∫ te

ts

p(t′)G(S(t′), Ṡ(t′)) dt′ , (2)

where S(ts) = Ss and S(te) = Se , and where 0 ≤ Ss ≤ Se ≤ 1 are the States of Charge (considered known
parameters) at the start and end of the charging time-interval [ts, te].

In this context Question 1 is a classical problem in the calculus of variations, which may be solved (at
least in principle) by standard techniques. For a given price function p(t), the optimal charging regime is a
stationary path of (2) given by a solution of the Euler-Lagrange equation,

d

dt
[p(t)GṠ ]− p(t)GS = 0 , (3)

with boundary conditions S(ts) = Ss and S(te) = Se. In this equation, and what follows, we use subscripts
to denote partial derivatives, so that GS = ∂G/∂S etc. As is standard for the calculus of variations, GṠ =

∂G/∂Ṡ denotes the partial derivative with respect to the second argument of G. Existence of a solution
of the second-order boundary value problem (3) is guaranteed under reasonably wide conditions. However,
solutions of (3) may not be unique and may not be minimisers/maximisers in general, even when the solution
is unique. Convexity of pG(S, Ṡ) with respect to Ṡ is sufficient to guarantee a unique minimizer. In general,
determining whether or not a solution is a minimizer requires analysis of the second variation (and higher)
of (2), which is not, in general, an easy task. Constraints may be tackled using Lagrange multipliers and/or
slack variables, but again the analysis can be quite involved.

Question 2 is also readily solved by variational methods. Let the SOC S(t) be given. If S is optimal for a
price function p(t), then the Euler-Lagrange equation (3) must also be satisfied. Viewed as an equation for
the unknown function p(t), equation (3) is a first-order linear ordinary differential equation (o.d.e.), which
may be solved via an elementary integrating factor method. Explicitly

p(t) = p(ts)
GṠ(ts)

GṠ(t)
exp

[∫ t

ts

GS(t′)

GṠ(t′)
dt′
]
, (4)

provided GṠ 6= 0. Up to the (expected) arbitrary price normalization p(ts), the solution is unique.

We now turn to Questions 3 – 5. For a prescribed power function W (t), the equation G(S, Ṡ) = W (t)
is an implicit first-order ordinary differential equation for S which may be solved subject to the one of
the boundary conditions, S(ts) = Ss, say. As an initial value problem, it has a unique solution close to
t = ts, but may not necessarily extend to the whole of the charging interval [ts, te]. Also it is not possible,
in general, to specify Se; instead it must be calculated from the solution of the o.d.e. This clearly imposes
a constraint on W (t) and/or Se; too high a power function, for example, will lead to overcharging of the
battery. Therefore determining which power functions produce admissible charging regimes is not always
straightforward. Assuming that the value S(te) = Se has been determined, it is now possible, at least in
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principle, to use the above method to determine the price function p(t) which gives G(S, Ṡ) = W (t) for the
optimal SOC S(t). Finally, having determined p(t) and G(S, Ṡ), it now straightforward, again in principle,
to evaluate the cost functional (2) to obtain the minimum cost of charging.

The above discussion applies irrespective of whether the battery is being charged or discharged, or,
indeed, a combination of the two. As we shall see in the model example below, there are circumstances when
buying electricity and selling it back to the grid reduces the cost, even when an agent must end the charging
period with a fully charged battery. Of course, an agent is quite severely constrained in the use of such a
buy-low sell-high strategy, not just by the capacity of the battery, but also by other constraints on I(t), V (t)
and W (t), either imposed by the electricity supplier or by the characteristics of the storage battery. In the
model example considered in the next section, constraints of this form are not imposed a priori, although
any optimal solution must be checked to ensure no constraints are violated, and, if so, the optimal solution
must be recalculated incorporating any binding constraints.

4 Model example

Let us illustrate this theory with a simple battery model, which has the twofold advantage (i) that the V -I
constituent relation can be obtained without having to solve differential equations; and (ii) that the Euler-
Lagrange equation may be readily solved. Furthermore, models of this type are used to model batteries in
electric vehicles. See, for example, [1] and [6].

For this model, V = VOC + Rb(t)I. Here I(t) is the current flowing into the battery during charging.
Recall that I = QmaxṠ, where S(t) is the State of Charge (SOC), and Qmax is maximum charge that can be
stored in the battery. Furthermore, V (t) is the voltage at the battery terminals, VOC the open circuit voltage
of the battery (i.e., the voltage presented in the absence of current), Rb(t) is the internal resistance of the
battery (which, for simplicity, we take as constant Rb, but which, in general, will be determined by S(t),
and will depend on whether the battery is charging or discharging.) For a price function p(t), equation (1)

becomes C(S) =
∫ te
ts
F (t, S(t), Ṡ(t)) dt where

F (t, S, Ṡ) = p(t)W (t) = p(t)G(S(t), Ṡ(t)) = p(t)
(
VOC +RbQmaxṠ

)
QmaxṠ . (5)

We note that GS = 0, so that, for general p(t), the Euler-Lagrange equation (3) reduces to

Qmax
d

dt

[
p0(t)

(
VOC + 2QmaxRbṠ

)]
= 0 , (6)

which may be integrated immediately to give

S(t) = Ss + c

∫ t

ts

dt′

p(t′)
− VOC

2QmaxRb
(t− ts) , (7)

where the constant c is determined by the condition S(te) = Se. Since FṠṠ = 2p(t)Q2
maxRb > 0 for Rb > 0,

F is strictly convex with respect to Ṡ and the solution is unique by standard results. We note that

I = QmaxṠ =
cQmax

p(t)
− VOC

2Rb
, (8)

confirming that charging current is a decreasing function of price.
For constant price p(t) ≡ p, the solution reduces to constant current I = Qmax(Se − Ss)/(ts − te).

This is also a solution in the singular case Rb = 0, although, in that case, F is no longer strictly convex
and the solution is not unique. For constant p, the total cost of charge is easily calculated to be C =
pQmax (VOC +RbQmax(Se − Ss)/(te − ts)) which is minimized when te − ts is maximized, i.e., for trickle
charge. When Rb = 0, there is no solution except when p is constant and, in that highly degenerate case,
the total cost is pQmaxVOC , independently of the rate of charge. This answers Question 1.

Turning to Questions 2–5, we note that GS = 0 and GṠ = Qmax

(
VOC + 2QmaxRbṠ

)
, and equation (4)

becomes

p(t) = p(ts)
VOC + 2QmaxRbṠ(ts)

VOC + 2QmaxRbṠ(t)
, (9)
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which again confirms the relationship between price and charging current.
For a specified voltage function V (t) or power function W (t), the equations

VOC +RbQmaxṠ = V (t) , QmaxṠ
(
VOC +RbQmaxṠ

)
= W (t) (10)

may be solved to give the charging rate Ṡ. For the latter equation,

S(t) = S(ts) +
1

2QmaxRb

∫ t

ts

(
V 2
OC + 4RbW (t′)

)1/2 − VOC dt′ (11)

with the condition S(te) = Se placing a constraint on the choice of W (t). The price function that induces
this power function is

p(t) = p(ts)

(
V 2
OC + 4RbW (ts)

V 2
OC + 4RbW (t)

)1/2

,
(
V 2
OC + 4RbW (t) > 0

)
, (12)

with a total cost

C = p(ts)

∫ te

ts

(
V 2
OC + 4RbW (ts)

V 2
OC + 4RbW (t)

)1/2

W (t) dt . (13)

For Rb ≥ 0, the cases of constant power, constant voltage, constant current and constant pricing are all
equivalent to constant Ṡ, which has been considered above.

We now illustrate this theory with a couple of practical examples, of immediate relevance to power
systems. We consider a storage battery with characteristics typical of an electric vehicle battery, with values
of the constants taken for the Saft VL45E cell as given in Table I and Figure 1 in [1]. In particular we take
Qmax = 45Ah, VOC = 3.5V , and Rb = 4mΩ. The results given below are for these parameter values and for
an electricity price of £0.15 per kWh.

Our first example answers the question: how might an electricity supplier determine the price function
p(t) to help even out demand over a 24-hour period? Figure 1 illustrates a typical profile for UK electricity
demand for a weekday (Monday – Thursday) (as published by the UK National Grid), with its characteristic
mid-morning and mid-evening peaks. For an electricity supplier, incentivizing agent behaviour to help even
out demand is a significant objective. Let us consider an agent with a storage battery who desires to charge
the battery over a twenty-four hour period and let us assume that the electricity supplier wishes to incentivize
a power profile W (t) as illustrated in Figure 2. (The profile has been adjusted for the attributes of the cell
and to ensure that S is 0 at the start of the 24-hour period and is 1 at the end.) The associated SOC that
generates W (t) is shown in Figure 3 and the price function p(t) which induces this function S(t) as the
minimal-cost SOC is shown in Figure 2. Note that Ṡ < 0 for part of the charging period, indicating that the
optimal solution involves selling electricity back to the electricity supplier during a period of high price and
buying back the electricity at a later time. That the price function p(t) mimics the demand and complements
the function W (t) is not, of course, surprising. Perhaps more surprising is the low relative variation in the
price. Indeed, in line with the Institution of Mechanical Engineers report, such a small price variation might
not be sufficient to persuade an agent to depart from constant charging (also shown in Figure 3), since, the
optimal solution offers a saving of only approximately 1% over constant charging.

Our second example considers an electric vehicle that is to be charged overnight in the period 17:00 -
07:00, with the electricity supplier aiming to disincentivize charging in the high-demand period from 17:00 to
21:00. This example also illustrates how the theory can be readily applied to non-smooth charging functions.
Indeed, in practice the price function is often piecewise constant, which leads to a piecewise-linear optimal
charging function.

We assume that the vehicle has a battery pack consisting of 160 Saft VL45E cells so that the maximal
storable energy is in the range 25–26 kWh. The particular series/parallel configuration is not important here
provided there are no differences between individual cells. The SOC of the vehicle at 17:00 is denoted Ss,
where, as before, 0 ≤ Ss ≤ 1. The variable Ss might be modelled as a random variable, but here we take
it as a parameter. For simplicity, the price function has two values only: one applicable before 21:00 and
another afterwards. As an illustration, we set the function (i) so that the cost of a full steady charge over
the 14-hour period is precisely £0.15 per kWh; and (ii) so that the price before 21:00 is 50% higher than
the price after 21:00. This means that the price before 21:00 is c. £0.20 per kWh and after 21:00 is c. £0.13
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Fig. 1 A typical UK weekday demand profile

Fig. 2 Power and induced price functions

per kWh and the total cost of a full constant charge (Ss = 1) of the battery pack over the 14 hour period is
£3.79. In Figure 4, we illustrate the total optimal cost of charging the battery pack as a function of Ss and
in Figure 5 we show the percentage reduction obtained by changing to the optimal solution from constant
charging from S = Ss to S = 1.

Three comments are in order. First, in this example, the optimal solution takes full advantage of the
price differential to sell electricity and then buy it back later, so that the battery is fully discharged at 21:00.
In fact, as Ss increases from 0 to 1, there are corresponding increases in both the absolute and percentage
cost reduction, compared to steady charging, even though the vehicle requires less charge and so the cost of
steady charging also reduces. As can be seen from Figure 4, for Ss > 0.676 the total cost is negative so that,
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Fig. 3 The associated SOC (compared with constant charging)

Fig. 4 The minimum cost of charge for the 14-hour period 17:00 to 07:00, with a 50% penalty for charging before 21:00.

ignoring battery degradation, an agent can make a profit by leaving a fully charged vehicle connected to the
grid.

Second, the optimal solution changes if the constraints are binding, particularly for fast charging. For
example, suppose, with the same pricing function, the vehicle is charged over a half-hour period from 20:45
to 21:15. The optimal charging function, taking into account the constraints, is shown for various initial Ss

in Figure 6. For Ss close to 1, the optimal solution is unaffected by constraints. However, For Ss < 0.884
the solution is constrained in the period 21:00 to 21:15 by the maximum permitted steady current of 100 A
for the Saft VL45E and it is not possible to take full advantage of the price differential between the two
time periods. In this case the optimal solution consists of steady charge/discharge in the period before 21:00
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Fig. 5 The percentage saving of the minimum-cost charging over steady charge the 14-hour period 17:00 to 07:00, with a 50%
penalty for charging before 21:00.

Fig. 6 The optimal charging function S(t) for the period 20:45 to 21:15 for initial SOC = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. Note
that, for initial SOC < 0.884, the maximum permitted current is a binding constraint in the period between 21:00 and 21:15.

followed by steady charge between 21:00 and 21:15. For Ss < 0.444 the battery does not discharge at all,
although charging takes place at a slower rate before 21:00. For higher values of Ss, the battery discharges
before 21:00, but full discharge does not occur.

Third, it is important to understand the economic cost of continually charging and discharging the
battery, especially if prosumers are to be persuaded to connect an electric vehicle power pack to the grid
as in V2G storage. Although a full analysis involving realistic models of battery degradation is beyond the
scope of the present study, an estimate of lifetime battery costs may be readily obtained. Let us assume that
the effective battery lifetime consists of 1000 full charge-discharge cycles. Taking into account recent falls
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in battery prices, let us also assume a price of £150 per kWh, so that a 25 kWh battery costs £3750 to
replace. Hence each full charge-discharge cycle costs £3.75 in battery degradation, in addition to the cost of
the electricity required to charge the battery. For simplicity, we assume that a partial charge-discharge cycle
(or vice versa) incurs costs proportional to the SOC charged & discharged, so that, for example, discharging
from full SOC to 50% SOC, followed by recharging up to full SOC, costs £1.88 in battery degradation.

Returning to the second example above, in which a car is charged over a 14-hour period with a price
ratio of 1.5:1 for the peak and off-peak charging periods, the additional cost of charging taking into account
battery degradation increases linearly with initial SOC. For initial SOC Ss = 0 there is no additional cost so
that the total cost of charging to full charge is unchanged. However, when Ss = 1, and the battery discharges
fully before recharging, the additional cost of £3.75 exceeds the profit from price arbitrage. Indeed, for these
choices of the parameters the optimal solution consists of constant charging between 21:00 and 07:00 for all
values of Ss. However, if, as an illustration, we now assume a battery lifetime of 2000 charge-discharge cycles
and a price ratio of 2:1 for the periods before and after 21:00, it becomes worthwhile to sell electricity to the
grid and buy it back at a later time for all initial SOC Ss > 0.120. This illustrates further the sensitivity of
the optimal solution to the parameter values and the difficulty of incentivising storage given current costs
and technology.

5 Discussion

In this paper we have outlined a classical variational approach to optimising battery charge/discharge for a
storage supplier or prosumer. In many circumstances, these classical variational techniques may be sufficient
for the analysis of the problems considered in this paper. However, it may be argued that modern develop-
ments in variational methods offer a better framework. First, the modern theory provides a relaxation in the
smoothness requirements of the functional and of the optimal solution to account for non-smoothness in price
and battery models. Second, the modern theory provides for the incorporation of constraints and penalties,
without the need for Lagrange multipliers or slack variables. There are, however, several disadvantages of
the modern theory. It is possible that unphysical/unrealistic solutions might be introduced and also the
modern theory is in many ways mathematically oversophisticated. Indeed, once theoretical questions have
been decided, hands-on computations may require classical techniques in any case.

For example, let us consider the variational methods developed by Rockafellar and others as surveyed in
[10]. In this approach the functional (1) is replaced by

C =

∫ te

ts

L(t, S, Ṡ) dt+ `(Sts , Ste) , (14)

where L = p(t)G(S, Ṡ) and ` have relatively mild technical restrictions, are able to take infinite values (and
so can naturally incorporate constraints).

A word of caution is needed. Convexity is a typical requirement to ensure uniqueness of the solution
but may not always be appropriate in the context of battery charging/discharging; indeed it is not even
evident that L(t, S, Ṡ) should be defined on a convex set. Indeed, there are several distinct charging regimes
commonly recommended/used in industrial applications. These include constant-current, constant-voltage,
hybrid methods (such as constant-current followed by constant-voltage), as well as pulsed, trickle and quick
charging. Each regime has its characteristic charging time and effect on battery temperature and battery
lifetime and, of course, each battery has its own attributes and manufacturer-recommended charging regimes.
Hence, it is possible that rapid and trickle charge (but not intermediate options) might both be acceptable
for a given battery design, thereby violating the convexity requirement.

Let us conclude by listing several other directions for future research. It would clearly be helpful to
develop the theory presented here to include, for example, generalized battery models; differential pricing
for charging and discharging; random initial and final SOCs; a formal treatment of constraints; a ramp-up
penalty (so that, for example, equation (1) is modified to C =

∫ te
ts
p(t)W (t) + α(dI/dt)2 dt where α > 0);

more complicated pricing structures (where, for example, the price p = p(W, t) is explicitly dependent on
power); and ensembles of prosumers/battery models. These extensions will assist the design of pricing policies
needed to control the power system and to incentivize the development of storage.
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